HFA1113/883 TM Output Limiting, Ultra High Speed Programmable Gain, Buffer Amplifier July 1994 Features Description • This Circuit is Processed in Accordance to MIL-STD883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1. The HFA1113/883 is a closed loop buffer featuring a high degree of gain accuracy, wide bandwidth, low distortion, and programmable output limiting. This buffer is the ideal choice for high frequency applications requiring output limiting, especially those needing ultra fast overdrive recovery times. The output limiting function allows the designer to set the maximum positive and negative output levels, thereby protecting later stages from damage or input saturation. The sub-nanosecond overdrive recovery time quickly returns the amplifier to linear operation following an overdrive condition. • User Programmable Output Voltage Limiting • User Programmable For Closed-Loop Gains of +1, -1 or +2 Without Use of External Resistors • Low Differential Gain and Phase . . . . .0.02%/0.04 Deg. • Low Distortion (HD3, 30MHz) . . . . . . . . . . -73dBc (Typ) • Wide -3dB Bandwidth . . . . . . . . . . . . . . . 850MHz (Typ) • Very High Slew Rate . . . . . . . . . . . . . . . 2400V/µs (Typ) • Fast Settling (0.1%) . . . . . . . . . . . . . . . . . . . . 13ns (Typ) • Excellent Gain Flatness (to 100MHz) . . . . 0.07dB (Typ) • Excellent Gain Accuracy . . . . . . . . . . . . . . 0.99V/V (Typ) • High Output Current . . . . . . . . . . . . . . . . . . 60mA (Typ) • Fast Overdrive Recovery . . . . . . . . . . . . . . . <1ns (Typ) Applications Component and composite video systems will also benefit from this buffer’s performance, as indicated by the excellent gain flatness, and 0.02%/0.04 Deg. Differential Gain/Phase specifications (R L = 150Ω). A unique feature of the pinout allows the user to select a voltage gain of +1, -1, or +2, without the use of any external components, as described in the “Design Information” section. Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date. This amplifier is available without output limiting as the HFA1112/883. For applications requiring a standard buffer pinout, please refer to the HFA1110/883 datasheet. • Video Switching and Routing • Pulse and Video Amplifiers • Wideband Amplifiers Ordering Information • RF/IF Signal Processing • Flash A/D Driver PART NUMBER • Medical Imaging Systems HFA1113MJ/883 HFA1113ML/883 TEMPERATURE RANGE -55 oC -55 oC PACKAGE to +125oC 8 Lead CerDIP to +125oC 20 Lead Ceramic LCC Pinouts 8 VH 7 V+ NC 4 6 OUT -IN 5 5 VL 300 -IN 2 +IN 3 V- 4 - + NC NC NC 300 1 NC NC NC HFA1113/883 (CLCC) TOP VIEW HFA1113/883 (CERDIP) TOP VIEW 3 2 1 20 19 18 VH 300 300 17 V+ - NC 6 16 NC 15 OUT + +IN 7 14 NC NC 8 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2002. All Rights Reserved 189 NC NC VL V- NC 9 10 11 12 13 Spec Number 511106-883 FN3618.1 Specifications HFA1113/883 Absolute Maximum Ratings Thermal Information Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V Voltage at Either Input Terminal . . . . . . . . . . . . . . . . . . . . . . V+ to VVoltage at VH or VL Terminal . . . . . . . . . . . . . (V+) + 2V to (V-) - 2V Output Current (50% Duty Cycle) . . . . . . . . . . . . . . . . . . . . . . . . ±55mA Junction Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175oC ESD Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . < 2000V Storage Temperature Range . . . . . . . . . . . . . . -65oC ≤ TA ≤ +150oC Lead Temperature (Soldering 10s). . . . . . . . . . . . . . . . . . . . +300oC θJC Thermal Resistance θJA CerDIP Package . . . . . . . . . . . . . . . . . 115oC/W 30oC/W Ceramic LCC Package . . . . . . . . . . . . 75oC/W 23oC/W Maximum Package Power Dissipation at +75oC CerDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.87W Ceramic LCC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.33W Package Power Dissipation Derating Factor above +75oC CerDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.7mW/oC Ceramic LCC Package . . . . . . . . . . . . . . . . . . . . . . . . 13.3mW/oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Operating Conditions Operating Supply Voltage (±VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5V Operating Temperature Range. . . . . . . . . . . . .-55oC ≤ TA ≤ +125oC RL Š≥ 50Ω TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS Device Tested at: V SUPPLY = ±5V, RSOURCE = 0Ω, RL = 100Ω, VOUT = 0V, Unless Otherwise Specified. PARAMETERS Output Offset Voltage Power Supply Rejection Ratio SYMBOL VOS PSRRP PSRRN Non-Inverting Input (+IN) Current IBSP +IN Common Mode Rejection CMSIBP +IN Resistance +RIN CONDITIONS GROUP A SUBGROUPS VCM = 0V ∆VSUPPLY = ±1.25V, V+ = 6.25V, V- = -5V, V+ = 3.75V, V- = -5V ∆VSUPPLY = ±1.25V, V+ = 5V, V- = -6.25V, V+ = 5V, V- = -3.75V ∆VCM = ±2V, V+ = 3V, V- = -7V, V+ = 7V, V- = -3V Note 1 Gain (VOUT = 2VP-P) Gain (VOUT = 4VP-P) Output Voltage Swing AVP1 AVM1 AVP2 VOP100 VON100 Output Voltage Swing VOP50 VON50 AV = +1, VIN = -1V to +1V AV = -1, VIN = -1V to +1V AV = +2, VIN = -1V to +1V AV = -1 RL = 100Ω +25 C -25 25 mV -40 40 mV 1 +25oC 39 - dB 2, 3 +125oC, -55oC 35 - dB 1 +25oC 39 - dB 35 - dB AV = -1 RL = 100Ω AV = -1 RL = 50Ω AV = -1 RL = 50Ω +125 oC, -55oC 1 +25oC -40 40 µA 2, 3 +125oC, -55oC -65 65 µA 1 +25oC - 40 µA/V 2, 3 +125oC, -55oC - 50 µA/V 1 +25oC 25 - kΩ oC, -55oC 20 - kΩ 1 +25oC 0.980 1.020 V/V 2, 3 +125oC, -55oC 0.975 1.025 V/V 1 +25oC 0.980 1.020 V/V +125 o o 2, 3 +125 C, -55 C 0.975 1.025 V/V 1 +25oC 1.960 2.040 V/V 1.950 2.050 V/V 3 - V 2.5 - V 1 VIN = 2.7V UNITS +125oC, -55oC 2, 3 VIN = -3.2V MAX 1 2, 3 Gain (VOUT = 2VP-P) o MIN 2, 3 2, 3 VCM = 0V LIMITS TEMPERATURE 2, 3 +125 oC, -55oC +25oC +125oC, -55oC VIN = +3.2V 1 +25oC - -3 V VIN = +2.7V 2, 3 +125oC, -55oC - -2.5 V VIN = -2.7V 1, 2 +25oC, +125oC 2.5 - V 3 -55oC 1.5 - V 1, 2 +25oC, +125oC - -2.5 V 3 -55oC - -1.5 V VIN = 2.25V VIN = +2.7V VIN =+2.25V Spec Number 190 511106-883 Specifications HFA1113/883 TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued) Device Tested at: V SUPPLY = ±5V, RSOURCE = 0Ω, RL = 100Ω, VOUT = 0V, Unless Otherwise Specified. PARAMETERS Output Current SYMBOL +IOUT MAX UNITS 50 - mA RL = 100Ω VHCLMP VLCLMP VH or VL Input Current MIN +25oC, +125oC RL = 100Ω ICC IEE Limiting Accuracy TEMPERATURE 1, 2 Note 2 Note 2 -IOUT Quiescent Power Supply Current CONDITIONS VHBIAS VLBIAS LIMITS GROUP A SUBGROUPS AV = -1, VIN = -1.6V, VH = 1V AV = -1, VIN = +1.6V, VL = -1V VH = 1V VL = -1V o 3 -55 C 30 - mA 1, 2 +25oC, +125oC - -50 mA 3 -55oC - -30 mA 1 +25oC 14 26 mA 2, 3 +125oC, -55oC - 33 mA 1 +25oC -26 -14 mA 2, 3 +125oC, -55oC -33 - mA 1 +25oC -150 150 mV 2, 3 +125oC, -55oC -200 200 mV 1 +25oC -150 150 mV o o 2, 3 +125 C, -55 C -200 200 mV 1 +25oC - 200 µA 2, 3 +125 C, -55 C - 300 µA 1 +25oC -200 - µA -300 - µA o 2, 3 +125 oC, o -55oC NOTES: 1. Guaranteed from +IN Common Mode Rejection Test, by: +R IN = 1/CMSIBP . 2. Guaranteed from VOUT Test with RL = 50Ω, by: IOUT = VOUT /50Ω. TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS Table 2 Intentionally Left Blank. TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS Device Characterized at: VSUPPLY = ±5V, RL = 100Ω, Unless Otherwise Specified. LIMITS PARAMETERS -3dB Bandwidth Gain Flatness Slew Rate SYMBOL CONDITIONS BW(-1) AV = -1, VOUT = 200mV P-P BW(+1) AV = +1, VOUT = 200mVP-P BW(+2) AV = +2, VOUT = 200mVP-P NOTES TEMPERATURE MIN MAX UNITS 1 +25oC 450 - MHz o 500 - MHz o 1 +25 C 1 +25 C 350 - MHz - ±0.04 dB GF30 AV = +2, f ≤ 30MHz, VOUT = 200mV P-P 1 +25oC GF50 AV = +2, f ≤ 50MHz, VOUT = 200mV P-P 1 +25oC - ±0.08 dB GF100 AV = +2, f ≤ 100MHz, VOUT = 200mV P-P 1 +25oC - ±0.22 dB +SR(-1) AV = -1, VOUT = 5V P-P 1, 2 +25oC 1500 - V/µs -SR(-1) AV = -1, VOUT = 5VP-P 1, 2 +25oC 1800 - V/µs +SR(+1) AV = +1, VOUT = 5VP-P 900 - V/µs 1, 2 o +25 C -SR(+1) AV = +1, VOUT = 5VP-P 1, 2 +25 C 800 - V/µs +SR(+2) AV = +2, VOUT = 5VP-P 1, 2 +25oC 1200 - V/µs -SR(+2) AV = +2, VOUT = 5VP-P 1, 2 +25oC 1100 - V/µs o Spec Number 191 511106-883 Specifications HFA1113/883 TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued) Device Characterized at: VSUPPLY = ±5V, RL = 100Ω, Unless Otherwise Specified. LIMITS PARAMETERS SYMBOL Rise and Fall Time Overshoot Settling Time 2nd Harmonic Distortion 3rd Harmonic Distortion CONDITIONS NOTES TEMPERATURE MIN MAX UNITS TR(-1) AV = -1, VOUT = 0.5VP-P 1, 2 +25 C - 750 ps TF(-1) AV = -1, VOUT = 0.5VP-P 1, 2 +25oC - 800 ps TR(+1) AV = +1, VOUT = 0.5VP-P o - 750 ps TF (+1) AV = +1, VOUT = 0.5VP-P o - 750 ps TR(+2) AV = +2, VOUT = 0.5VP-P 1, 2 o +25 C - 1000 ps TF (+2) AV = +2, VOUT = 0.5VP-P 1, 2 +25oC - 1000 ps +OS(-1) AV = -1, VOUT = 0.5VP-P o - 30 % -OS(-1) AV = -1, VOUT = 0.5VP-P o - 25 % +OS(+1) AV = +1, VOUT = 0.5VP-P 1, 3 o +25 C - 65 % -OS(+1) AV = +1, VOUT = 0.5VP-P 1, 3 +25oC - 60 % +OS(+2) AV = +2, VOUT = 0.5VP-P -OS(+2) AV = +2, VOUT = 0.5VP-P TS(0.1) AV = +2, to 0.1%, VOUT = 2V to 0V 1 TS(0.05) AV = +2, to 0.05%, VOUT = 2V to 0V HD2(30) 1, 2 1, 2 1, 3 1, 3 o +25 C +25 C +25 C +25 C o 1, 3 +25 C - 20 % 1, 3 +25oC - 20 % +25 C - 20 ns 1 +25oC - 33 ns AV = +2, f = 30MHz, VOUT = 2VP-P 1 +25oC - -45 dBc HD2(50) AV = +2, f = 50MHz, VOUT = 2VP-P 1 +25oC - -40 dBc HD2(100) AV = +2, f = 100MHz, VOUT = 2VP-P 1 +25oC - -35 dBc HD3(30) AV = +2, f = 30MHz, VOUT = 2VP-P 1 +25oC - -65 dBc HD3(50) AV = +2, f = 50MHz, VOUT = 2VP-P 1 +25oC - -55 dBc HD3(100) AV = +2, f = 100MHz, VOUT = 2VP-P 1 +25oC - -45 dBc o NOTES: 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot-to-lot and within lot variation. 2. Measured between 10% and 90% points. 3. For 200ps input transition times. Overshoot decreases as input transition times increase, especially for A V = +1. Please refer to Performance Curves. TABLE 4. ELECTRICAL TEST REQUIREMENTS MIL-STD-883 TEST REQUIREMENTS SUBGROUPS (SEE TABLE 1) Interim Electrical Parameters (Pre Burn-In) 1 Final Electrical Test Parameters 1 (Note 1), 2, 3 Group A Test Requirements 1, 2, 3 Groups C and D Endpoints 1 NOTE: 1. PDA applies to Subgroup 1 only. Spec Number 192 511106-883 HFA1113/883 Die Characteristics DIE DIMENSIONS: 63 x 44 x 19 mils ± 1 mils 1600 x 1130 x 483µm ± 25.4µm METALLIZATION: Type: Metal 1: AICu(2%)/TiW Thickness: Metal 1: 8kÅ ± 0.4kÅ Type: Metal 2: AICu(2%) Thickness: Metal 2: 16kÅ ± 0.8kÅ GLASSIVATION: Type: Nitride Thickness: 4kÅ ± 0.5kÅ WORST CASE CURRENT DENSITY: 2.0 x 105 A/cm2 at 47.5mA TRANSISTOR COUNT: 52 SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-) Metallization Mask Layout HFA1113/883 NC +IN V- VL -IN VH NC V+ OUT Spec Number 193 511106-883 HFA1113/883 Test Circuit (Applies to Table 1) NC K3 VL 0.1 V+ 50 0.1 + ICC 10 Vos = 0.1 0.1 NC -VIN 2 2 1 +VIN 0.1 K1 510 5 - 2 1K 6 0.1 3 VY x100 7 1 K2 + - 470pF 510 VY 100 VOUT DUT + 8 100 100 4 50 100K (0.01%) VZ +IBIAS = 100K K3 0.1 + VZ 10 + 0.1 0.1 NC HA-5177 NOTE: K4 IEE V- 0.1 VH Terminal Numbers Refer to CerDIP Package All Resistors = ±1% (Ω) All Capacitors = ±10% (µF) Unless Otherwise Noted Chip Components Recommended For AV = +1, K1 = Position 1, K2 = Position 1 For AV = +2, K1 = Position 1, K2 = Position 2, -VIN = 0V For AV = -1, K1 = Position 1, K2 = Position 2, +VIN = 0V Test Waveforms SIMPLIFIED TEST CIRCUIT FOR LARGE AND SMALL SIGNAL PULSE RESPONSE (Applies to Table 3) AV = +1 or +2 TEST CIRCUIT AV = -1 TEST CIRCUIT V+ 3 + 2 - VIN RS 50Ω V+ 7 VOUT 6 4 50Ω VIN 2 RS 50Ω 50Ω RG 2 3 + V- 7 VOUT 6 4 50Ω V- NOTE: NOTE: VS = ±5V, RG = 0Ω for AV = +2, R G = ∞ for AV = +1 RF = Internal, RS = 50Ω RL = 100Ω For Small and Large Signals Terminal Numbers Refer to CerDIP Package VS = ±5V, AV = -1 RF = Internal RS = 50Ω, RL = 100Ω For Small and Large Signals Terminal Numbers Refer to CerDIP Package LARGE SIGNAL WAVEFORM SMALL SIGNAL WAVEFORM VOUT +2.5V VOUT 90% 90% +SR -2.5V 2 50Ω +2.5V +250mV -SR 10% 10% 90% 90% TF , -OS TR , +OS -2.5V -250mV 10% 10% Spec Number 194 +250mV -250mV 511106-883 HFA1113/883 Burn-In Circuits HFA1113MJ/883 CERAMIC DIP 1 300 8 - 7 D3 300 NC 2 + 3 D4 4 VD2 V+ C1 6 5 D1 R1 C2 NOTES: R1 = 100Ω, ±5% (Per Socket) C1 = C2 = 0.01µF (Per Socket) or 0.1µF (Per Row) Minimum D1 = D2 = 1N4002 or Equivalent (Per Board) D3 = D4 = 1N4002 or Equivalent (Per Socket) V+ = +5.5V ±0.5V V- = -5.5V ±0.5V HFA1113ML/883 CERAMIC LCC 3 2 4 NC 5 300 300 18 D3 17 - 6 R1 1 20 19 V+ 16 + 7 15 8 14 C1 D1 R2 9 10 11 12 13 D4 VD2 C2 NOTES: R1 = 1kΩ, ±5% (Per Socket) R2 = 100Ω, ±5% (Per Socket) C1 = C2 = 0.01µF (Per Socket) or 0.1µF (Per Row) Minimum D1 = D2 = 1N4002 or Equivalent (Per Board) D3 = D4 = 1N4002 or Equivalent (Per Socket) V+ = +5.5V ±0.5V V- = -5.5V ±0.5V Spec Number 195 511106-883 HFA1113/883 Ceramic Dual-In-Line Frit Seal Packages (CerDIP) F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A) 8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE LEAD FINISH c1 -D- -A- BASE METAL E b1 M M (b) -Bbbb S C A-B S SECTION A-A D S D BASE PLANE Q -C- SEATING PLANE A α L S1 eA A A b2 b ccc M C A-B S e D S eA/2 INCHES (c) c aaa M C A - B S D S SYMBOL MIN MAX MIN MAX NOTES A - 0.200 - 5.08 - b 0.014 0.026 0.36 0.66 2 b1 0.014 0.023 0.36 0.58 3 b2 0.045 0.065 1.14 1.65 - b3 0.023 0.045 0.58 1.14 4 c 0.008 0.018 0.20 0.46 2 c1 0.008 0.015 0.20 0.38 3 D - 0.405 - 10.29 5 E 0.220 0.310 5.59 7.87 5 e 0.100 BSC 2.54 BSC - eA 0.300 BSC 7.62 BSC - 3.81 BSC - eA/2 NOTES: 1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer’s identification shall not be used as a pin one identification mark. MILLIMETERS L 0.150 BSC 0.125 0.200 3.18 5.08 - Q 0.015 0.060 0.38 1.52 6 S1 0.005 - 0.13 - 7 α 90o 105o 90o 105o - aaa - 0.015 - 0.38 - bbb - 0.030 - 0.76 - 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness. ccc - 0.010 - 0.25 - M - 0.0015 - 0.038 2, 3 4. Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2. N 2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied. 8 8 8 Rev. 0 4/94 5. This dimension allows for off-center lid, meniscus, and glass overrun. 6. Dimension Q shall be measured from the seating plane to the base plane. 7. Measure dimension S1 at all four corners. 8. N is the maximum number of terminal positions. 9. Dimensioning and tolerancing per ANSI Y14.5M - 1982. 10. Controlling dimension: INCH. 11. Materials: Compliant to MIL-I-38535. Spec Number 196 511106-883 HFA1113/883 Ceramic Leadless Chip Carrier Packages (CLCC) J20.A MIL-STD-1835 CQCC1-N20 (C-2) 20 PAD LEADLESS CERAMIC CHIP CARRIER 0.010 S E H S D INCHES D3 j x 45o E3 B E 0.010 S E F S A SYMBOL MIN MAX MIN MAX NOTES A 0.060 0.100 1.52 2.54 6, 7 A1 0.050 0.088 1.27 2.23 - B - - - - - B1 0.022 0.028 0.56 0.71 2, 4 B2 h x 45 o A1 PLANE 2 -E- 0.022 0.15 0.56 - 0.342 0.358 8.69 9.09 - D1 0.200 BSC 5.08 BSC - D2 0.100 BSC 2.54 BSC - D3 - 0.358 - 9.09 2 E 0.342 0.358 8.69 9.09 - E1 0.200 BSC 5.08 BSC - E2 0.100 BSC 2.54 BSC - h j e L -H- L3 B3 E1 E2 0.358 0.050 BSC 0.015 - - 9.09 2 1.27 BSC 0.38 0.040 REF 0.020 REF - 2 1.02 REF 5 0.51 REF 5 0.045 0.055 1.14 1.40 - L1 0.045 0.055 1.14 1.40 - L2 0.075 0.095 1.91 2.41 - L3 0.003 0.015 0.08 5 0.38 - 5 3 NE 5 5 3 N 20 20 3 Rev. 0 4/94 NOTES: 1. Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals. L2 B2 2. Unless otherwise specified, a minimum clearance of 0.015 inch (0.38mm) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.) L1 D2 e1 - L ND -F- - 0.006 e1 B1 1.83 REF D e 0.007 M E F S H S 0.072 REF B3 E3 PLANE 1 MILLIMETERS 3. Symbol “N” is the maximum number of terminals. Symbols “ND” and “NE” are the number of terminals along the sides of length “D” and “E”, respectively. D1 4. The required plane 1 terminals and optional plane 2 terminals (if used) shall be electrically connected. 5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer’s option, from that shown on the drawing. 6. Chip carriers shall be constructed of a minimum of two ceramic layers. 7. Dimension “A” controls the overall package thickness. The maximum “A” dimension is package height before being solder dipped. 8. Dimensioning and tolerancing per ANSI Y14.5M-1982. 9. Controlling dimension: INCH. 10. Materials: Compliant to MIL-I-38535. Spec Number 197 511106-883 HFA1113 TM DESIGN INFORMATION Output Limiting, Ultra High Speed Programmable Gain Buffer Amplifier February 2002 The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. Typical Performance Curves VSUPPLY = ±5V, RL = 100Ω, TA = +25oC, Unless Otherwise Specified SMALL SIGNAL PULSE RESPONSE LARGE SIGNAL PULSE RESPONSE 200 2.0 AV = +2 1.5 100 1.0 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) AV = +2 150 50 0 -50 -100 -150 0.5 0 -0.5 -1.0 -1.5 -200 -2.0 5ns/DIV 5ns/DIV SMALL SIGNAL PULSE RESPONSE LARGE SIGNAL PULSE RESPONSE 2.0 200 AV = +1 1.5 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) 150 100 50 0 -50 -100 AV = +1 1.0 0.5 0 -0.5 -1.0 -1.5 -150 -2.0 -200 5ns/DIV 5ns/DIV SMALL SIGNAL PULSE RESPONSE LARGE SIGNAL PULSE RESPONSE 2.0 200 AV = -1 1.5 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) 150 100 50 0 -50 -100 AV = -1 1.0 0.5 0 -0.5 -1.0 -1.5 -150 -2.0 -200 5ns/DIV 5ns/DIV Spec Number 198 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. Typical Performance Curves VSUPPLY = ±5V, RL = 100Ω, TA = +25oC, Unless Otherwise Specified (Continued) UNCLAMPED PERFORMANCE (AV = +2, VH = 2V, VL = -2V) CLAMPED PERFORMANCE (AV = +2, VH = 1V, VL = -1V, 2X Overdrive) AV = +2 IN 0V TO 1V IN 0V TO 0.5V AV = +2 OUT 0V TO 1V OUT 0V TO 1V 20ns/DIV 20ns/DIV FREQUENCY RESPONSE FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS 6 VOUT = 200mVP-P AV = +1 A V = +2, VOUT = 200mVP-P 9 6 AV = +2 -6 0 PHASE -9 -90 AV = +2 AV = -1 AV = +1 -180 -270 GAIN 3 RL = 50Ω RL = 100Ω 0 RL = 1kΩ 0 PHASE -90 RL = 100Ω -360 -180 RL = 50Ω RL = 1kΩ 0.3 1 10 FREQUENCY (MHz) 100 0.3 1000 FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS 6 RL = 1kΩ RL = 100Ω RL = 50Ω RL = 1kΩ -9 0 PHASE RL = 100Ω RL = 50Ω RL = 1kΩ 1 10 100 FREQUENCY (MHz) -90 GAIN -3 GAIN (dB) GAIN PHASE (DEGREES) GAIN (dB) -360 1000 0 -6 0.3 100 AV = -1, VOUT = 200mVP-P 3 0 -3 10 FREQUENCY (MHz) FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS 6 AV = +1, VOUT = 200mVP-P 3 1 -270 RL = 100Ω RL = 50Ω -6 -9 RL = 100Ω 180 PHASE 90 -180 PHASE (DEGREES) -3 AV = -1 GAIN (dB) GAIN PHASE (DEGREES) 0 PHASE (DEGREES) GAIN (dB) NORMALIZED 3 0 RL = 50Ω -270 -90 RL = 1kΩ -360 1000 0.3 1 10 100 FREQUENCY (MHz) Spec Number 199 -180 1000 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. Typical Performance Curves VSUPPLY = ±5V, RL = 100Ω, TA = +25oC, Unless Otherwise Specified (Continued) FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES 12 6 1VP-P AV = +2 9 FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES GAIN 2.5VP-P 0 PHASE -90 -180 4.0VP-P 2.5VP-P 1 VOUT = 2.5VP-P -6 VOUT = 1VP-P 0 PHASE -90 VOUT = 1VP-P 0.3 1000 1 10 100 FREQUENCY (MHz) FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES AV = -1 1000 FULL POWER BANDWIDTH VOUT = 2.5VP-P VOUT = 4VP-P 3 GAIN VOUT = 5VP-P 12 0 PHASE 180 90 VOUT = 4VP-P 0 VOUT = 2.5VP-P PHASE (DEGREES) -6 GAIN (dB) NORMALIZED 9 VOUT = 1VP-P -3 -90 VOUT = 1VP-P 1 10 100 FREQUENCY (MHz) 3 0 -3 AV = -1 AV = +2 -6 AV = +1 -12 -180 0.3 6 -9 -15 0.3 1000 -3dB BANDWIDTH vs TEMPERATURE 1 10 FREQUENCY (MHz) 100 1000 GAIN FLATNESS 900 0.35 0.30 A V = +1 850 800 GAIN (dB) NORMALIZED GAIN (dB) -360 15 6 BANDWIDTH (MHz) -270 VOUT = 2.5VP-P -360 10 100 FREQUENCY (MHz) -180 VOUT = 4VP-P -270 1VP-P 0.3 VOUT = 4VP-P -3 GAIN (dB) 4.0VP-P 0 PHASE (DEGREES) GAIN 3 PHASE (DEGREES) 0 6 GAIN (dB) AV = +1 3 AV = -1 750 700 650 600 AV = +2 0.25 0.20 AV = +1 0.10 0.05 0 -0.05 550 AV = -1 0.15 AV = +2 -0.10 500 -0.15 -50 -25 0 +25 +50 +75 +100 +125 TEMPERATURE (oC) 1 10 100 FREQUENCY (MHz) Spec Number 200 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. Typical Performance Curves VSUPPLY = ±5V, RL = 100Ω, TA = +25oC, Unless Otherwise Specified (Continued) DEVIATION FROM LINEAR PHASE SETTLING RESPONSE 4 AV = +2, VOUT = 2V 0.6 2 1 SETTLING ERROR (%) DEVIATION (DEGREES) 3 AV = -1 0 -1 AV = +2 -2 AV = +1 -3 -4 0.4 0.2 0.1 0 -0.1 -0.2 -0.4 -0.6 -5 -6 0 15 30 45 60 75 90 105 120 -2 135 150 3 8 13 18 23 28 33 38 43 48 TIME (ns) FREQUENCY (MHz) LOW FREQUENCY REVERSE ISOLATION (S12) HIGH FREQUENCY REVERSE ISOLATION (S12) 180 -24 135 -30 PHASE AV = +1 AV = +1 -48 GAIN (dB) GAIN (dB) -42 -54 AV = +2 -60 AV = -1 AV = -1 -66 0 GAIN -30 AV = +2 AV = +1 -36 AV = -1 -48 -78 -54 -84 20 0 40 60 80 100 120 140 160 180 -60 100 190 200 FREQUENCY (MHz) 1dB GAIN COMPRESSION vs FREQUENCY 280 370 460 550 640 730 FREQUENCY (MHz) 820 910 1000 3rd ORDER INTERMODULATION INTERCEPT vs FREQUENCY 20 30 2 - TONE 18 16 INTERCEPT POINT (dBm) OUTPUT POWER AT 1dB COMPRESSION (dBm) 45 AV = +2 -24 -42 AV = +2 -72 90 AV = -1 PHASE (DEGREES) -36 AV = -1 14 AV = +2 12 10 AV = +1 8 6 AV = -1 20 AV = +2 AV = +1 10 4 2 0 100 200 300 FREQUENCY (MHz) 400 0 100 500 200 300 400 FREQUENCY (MHz) Spec Number 201 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. Typical Performance Curves VSUPPLY = ±5V, RL = 100Ω, TA = +25oC, Unless Otherwise Specified (Continued) 2nd HARMONIC DISTORTION vs POUT -20 AV = +2 -30 -30 -40 -40 DISTORTION (dBc) DISTORTION (dBc) -20 3rd HARMONIC DISTORTION vs POUT -50 -60 100MHz 30MHz 50MHz -70 AV = +2 -50 -60 -70 -80 -80 -90 -90 30MHz 50MHz 100MHz -100 -100 -6 -3 0 3 6 9 12 -6 15 -3 0 3 2nd HARMONIC DISTORTION vs POUT 12 15 18 3rd HARMONIC DISTORTION vs POUT AV = +1 -30 AV = +1 -30 -40 -40 DISTORTION (dBc) DISTORTION (dBc) 9 -20 -20 -50 -60 -70 100MHz 50MHz 30MHz -50 -60 -70 100MHz -80 -80 -90 -90 -6 -3 0 3 6 9 12 50MHz -100 -6 -100 15 -3 OUTPUT POWER (dBm) 0 30MHz 3 6 9 12 15 12 15 OUTPUT POWER (dBm) 2nd HARMONIC DISTORTION vs POUT 3rd HARMONIC DISTORTION vs POUT -20 -20 AV = -1 A V = -1 -30 -30 -40 -40 DISTORTION (dBc) DISTORTION (dBc) 6 OUTPUT POWER (dBm) OUTPUT POWER (dBm) -50 -60 100MHz -70 50MHz 30MHz -50 -60 -70 -80 -80 30MHz 50MHz 100MHz -90 -90 -100 -100 -6 -3 0 3 6 9 OUTPUT POWER (dBm) 12 -6 15 -3 0 3 6 9 OUTPUT POWER (dBm) Spec Number 202 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. Typical Performance Curves VSUPPLY = ±5V, RL = 100Ω, TA = +25oC, Unless Otherwise Specified (Continued) INTEGRAL LINEARITY ERROR OVERSHOOT vs INPUT RISE TIME 60 +0.04 VOUT = 0.5V OVERSHOOT (%) PERCENT ERROR (%) 50 +0.02 0 AV = +1 40 30 20 -0.02 AV = -1 10 AV = +2 0 100 -0.04 -3.0 -2.0 -1.0 0 +1.0 INPUT VOLTAGE (V) +2.0 +3.0 300 700 900 1100 1300 INPUT RISE TIME (ps) OVERSHOOT vs INPUT RISE TIME OVERSHOOT vs INPUT RISE TIME 60 60 VOUT = 1V VOUT = 2V 50 40 OVERSHOOT (%) 50 OVERSHOOT (%) 500 AV = +1 30 20 40 AV = +1 30 20 AV = +2 AV = -1 10 10 AV = -1 AV = +2 0 100 300 500 700 900 1100 0 100 1300 300 INPUT RISE TIME (ps) 700 900 1100 1300 INPUT RISE TIME (ps) SUPPLY CURRENT vs SUPPLY VOLTAGE SUPPLY CURRENT vs TEMPERATURE 25 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 24 23 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 500 22 21 20 19 18 17 16 15 5 6 7 8 9 -50 10 -25 0 +25 +50 +75 +100 +125 TEMPERATURE (oC) TOTAL SUPPLY VOLTAGE (V+ - V-, V) Spec Number 203 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. Typical Performance Curves VSUPPLY = ±5V, RL = 100Ω, TA = +25oC, Unless Otherwise Specified (Continued) OUTPUT VOLTAGE vs TEMPERATURE INPUT NOISE CHARACTERISTICS 3.6 AV = -1 50 130 40 110 30 90 20 70 OUTPUT VOLTAGE (V) +VOUT (R L = 100Ω) 3.3 3.2 NOISE VOLTAGE (nV/√Hz) +VOUT (RL = 50Ω) 3.4 |-VOUT| (RL = 100Ω) 3.1 3.0 2.9 2.8 |-VOUT| (RL = 50Ω) eni 50 10 ini 2.7 2.6 30 100 0 -50 -25 0 +25 +50 +75 TEMPERATURE (oC) +100 +125 0.1 1 10 FREQUENCY (kHz) VH CLAMP ACCURACY vs OVERDRIVE NON-LINEARITY NEAR CLAMP VOLTAGE (AV = -1) 20 350 15 VL = -3V VL = -2V VL = -1V 10 5 0 -5 VH = 1V -10 AV = ±1 300 CLAMP ACCURACY (mV) VOUT - (AV * VIN) (mV) NOISE CURRENT (pA/√Hz) 3.5 VH = 2V VH = 3V -15 VH = 500mV 250 VH = 1V 200 150 VH = 2V 100 VH = 100mV 50 -20 -3 -2 -1 0 1 2 3 0 AV * VIN (V) 0 VL CLAMP ACCURACY vs OVERDRIVE 250 100 200 300 OVERDRIVE (% OF VH) 400 500 VH CLAMP ACCURACY vs OVERDRIVE 400 AV = ±1 AV = +2 VL = 500mV VH = 1V CLAMP ACCURACY (mV) CLAMP ACCURACY (mV) 200 VL = 1V 150 100 VL = 2V 50 300 VH = 2V 200 VH = 500mV 100 VH = 100mV VL = 100mV 0 0 100 200 300 400 0 500 OVERDRIVE (% OF VL) 0 100 200 300 OVERDRIVE (% OF VH) Spec Number 204 400 500 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. Typical Performance Curves VSUPPLY = ±5V, RL = 100Ω, TA = +25oC, Unless Otherwise Specified (Continued) VL CLAMP ACCURACY vs OVERDRIVE OVERDRIVE RECOVERY vs OVERDRIVE 250 3500 VL = 1V OVERDRIVE RECOVERY TIME (ps) CLAMP ACCURACY (mV) AV = +2 200 VL = 500mV 150 VL = 2V 100 50 VL = 100mV 0 0 100 200 300 OVERDRIVE (% OF VL) 400 500 3000 2500 VH = 2V 2000 1500 VH = 1V 1000 VH = 0.5V 500 VH = 0.1V 0 100 200 300 400 500 OVERDRIVE LEVEL (% OF CLAMP LEVEL) CLAMP ACCURACY vs TEMPERATURE CLAMP ACCURACY (mV) 130 CLAMP BIAS CURRENT vs TEMPERATURE 130 AV = -1, VIN = ±1.6V VH = 1V, VL = -1V 120 110 VH 100 90 VL 80 70 60 -75 VH = 1V, VL = -1V 120 CLAMP BIAS CURRENT (µA) 140 110 100 90 VL 80 70 60 VH 50 40 30 -50 -25 0 +25 +50 +75 TEMPERATURE (°C) 20 -75 +100 +125 +150 VH CLAMP INPUT BANDWIDTH -25 +25 +50 +75 0 TEMPERATURE (°C) +100 +125 +150 VL CLAMP INPUT BANDWIDTH 6 6 VH = 300mVP-P 3 0 0 -3 -3 -6 VH = 600mVP-P VH = 1.2VP-P -9 VL = 300mVP-P 3 GAIN (dB) GAIN (dB) -50 -12 -6 VL = 600mVP-P -9 VL = 1.2VP-P -12 1 10 100 FREQUENCY (MHz) 1 1000 10 100 FREQUENCY (MHz) Spec Number 205 1000 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. Application Information Closed Loop Gain Selection The HFA1113 features a novel design which allows the user to select from three closed loop gains, without any external components. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space. This “buffer” operates in closed loop gains of -1, +1, or +2, and gain selection is accomplished via connections to the ±Inputs. Applying the input signal to +IN and floating -IN selects a gain of +1, while grounding -IN selects a gain of +2. A gain of -1 is obtained by applying the input signal to -IN with +IN grounded. The table below summarizes these connections: GAIN (ACL ) CONNECTIONS +INPUT (PIN 3) -INPUT (PIN 2) -1 GND Input +1 Input NC (Floating) +2 Input GND Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the RS and C L combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance. R S and CL form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 850MHz. By decreasing R S as CL increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. Even so, bandwidth does decrease as you move to the right along the curve. For example, at A V = +1, R S = 50Ω, C L = 30pF, the overall bandwidth is limited to 300MHz, and bandwidth drops to 100MHz at A V = +1, R S = 5Ω, C L = 340pF. PC Board Layout RS (Ω) The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must! Attention should be given to decoupling the power supplies. A large value (10µF) tantalum in parallel with a small value (0.1µF) chip capacitor works well in most cases. Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section. For unity gain applications, care must also be taken to minimize the capacitance to ground seen by the amplifier’s inverting input. At higher frequencies this capacitance will tend to short the -INPUT to GND, resulting in a closed loop gain which increases with frequency. This will cause excessive high frequency peaking and potentially other problems as well. Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier’s phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor (RS) in series with the output prior to the capacitance. AV = +1 AV = +2 0 40 80 120 160 200 240 280 320 LOAD CAPACITANCE (pF) 360 400 FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs. LOAD CAPACITANCE Evaluation Board The performance of the HFA1113 may be evaluated using the HFA11XX Evaluation Board, slightly modified as follows: 1. Remove the 500Ω feedback resistor (R2), and leave the connection open. 2. A. For AV = +1 evaluation, remove the 500Ω gain setting resistor (R1), and leave pin 2 floating. B. For AV = +2, replace the 500Ω gain setting resistor with a 0Ω resistor to GND. An example of a good high frequency layout is the Evaluation Board shown in Figure 2. Driving Capacitive Loads 50 45 40 35 30 25 20 15 10 5 0 The layout and modified schematic of the board are shown in Figure 2. To order evaluation boards, please contact your local sales office. Spec Number 206 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. V+ BOTTOM LAYOUT TOP LAYOUT VH QP3 QP4 1 QN2 +IN OUT V+ VL VGND QP1 +IN R1 Z ICLAMP +1 VV+ VH QN1 ∞ (AV = +1) or 0Ω (AV = +2) VH 1 8 50Ω 2 7 3 6 OUT 4 5 VL IN 10µF QN5 QP2 R1 0.1µF 10µF 50K (30K FOR VL) QN6 200Ω QP6 QN3 QN4 QP5 +5V 50Ω GND 0.1µF -5V V-IN V- RF = 300Ω RG (INTERNAL) (INTERNAL) -IN 300Ω GND VOUT FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT FIGURE 3. HFA1113 SIMPLIFIED VH CLAMP CIRCUITRY Clamp Operation General The HFA1113 features user programmable output clamps to limit output voltage excursions. Clamping action is obtained by applying voltages to the VH and VL terminals (DIP pins 8 & 5) of the amplifier. VH sets the upper output limit, while VL sets the lower clamp level. If the amplifier tries to drive the output above VH, or below VL, the clamp circuitry limits the output voltage at VH or VL (± the clamp accuracy), respectively. The low input bias currents of the clamp pins allow them to be driven by simple resistive divider circuits, or active elements such as amplifiers or DACs. Clamp Circuitry Figure 3 shows a simplified schematic of the HFA1113 input stage, and the high clamp (VH) circuitry. As with all current feedback amplifiers, there is a unity gain buffer (QX1 - QX2) between the positive and negative inputs. This buffer forces -IN to track +IN, and sets up a slewing current of: (V-IN - VOUT)/RF + V-IN / RG . This current is mirrored onto the high impedance node (Z) by QX3-QX4, where it is converted to a voltage and fed to the output via another unity gain buffer. If no clamping is utilized, the high impedance node may swing within the limits defined by QP4 and QN4. Note that when the output reaches it’s quiescent value, the current flowing through -IN is reduced to only that small current (-IBIAS) required to keep the output at the final voltage. Tracing the path from V H to Z illustrates the effect of the clamp voltage on the high impedance node. VH decreases by 2V BE (QN6 and QP6) to set up the base voltage on QP5. QP5 begins to conduct whenever the high impedance node reaches a voltage equal to QP5’s base voltage + 2VBE (QP5 and QN5). Thus, QP5 clamps node Z whenever Z reaches VH. R1 provides a pull-up network to ensure functionality with the clamp inputs floating. A similar description applies to the symmetrical low clamp circuitry controlled by V L. When the output is clamped, the negative input continues to source a slewing current (ICLAMP) in an attempt to force the output to the quiescent voltage defined by the input. QP5 must sink this current while clamping, because the -IN current is always mirrored onto the high impedance node. The clamping current is calculated as: ICLAMP = (V-IN - VOUT CLAMPED) / 300Ω + V-IN / RG . As an example, a unity gain circuit with VIN = 2V, and VH = 1V, would have ICLAMP = (2V-1V) / 300Ω + 2V / ∞ = 3.33mA (R G = ∞ because -IN is floated for unity gain applications). Note that ICC will increase by ICLAMP when the output is clamp limited. Clamp Accuracy The clamped output voltage will not be exactly equal to the voltage applied to VH or VL. Offset errors, mostly due to VBE mismatches, necessitate a clamp accuracy parameter which is found in the device specifications. Clamp accuracy is a function of the clamping conditions. Referring again to Figure 3, it can be seen that one component of clamp accuracy is the VBE mismatch between the QX6 transistors, and the QX5 transistors. If the transistors always ran at the same current level there would be no VBE mismatch, and no contribution to the inaccuracy. The QX6 transistors are biased at a constant current, but as described earlier, the current through QX5 is equivalent to ICLAMP . VBE increases as ICLAMP increases, Spec Number 207 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. causing the clamped output voltage to increase as well. ICLAMP is a function of the overdrive level (AVCL x VIN - VOUT CLAMPED), so clamp accuracy degrades as the overdrive increases. As an example, the specified accuracy of ±100mV for a 1.6X overdrive degrades to ±240mV for a 3X overdrive. Consideration must also be given to the fact that the clamp voltages have an affect on amplifier linearity. The “Nonlinearity Near Clamp Voltage” curve in the data sheet illustrates the impact of several clamp levels on linearity. Clamp Range Unlike some competitor devices, both VH and VL have usable ranges that cross 0V. While VH must be more positive than VL, both may be positive or negative, within the range restrictions indicated in the specifications. For example, the HFA1113 could be limited to ECL output levels by setting VH = -0.8V and VL = -1.8V. VH and VL may be connected to the same voltage (GND for instance) but the result won’t be a DC output voltage from an AC input signal. A 150 - 200mV AC signal will still be present at the output. Recovery from Overdrive The output voltage remains at the clamp level as long as the overdrive condition remains. When the input voltage drops below the overdrive level (VCLAMP / AVCL) the amplifier will return to linear operation. A time delay, known as the Overdrive Recovery Time, is required for this resumption of linear operation. The plots of “Unclamped Performance” and “Clamped Performance” highlight the HFA1113’s subnanosecond recovery time. The difference between the unclamped and clamped propagation delays is the overdrive recovery time. The appropriate propagation delays are 8.0ns for the unclamped pulse, and 8.8ns for the clamped (2X overdrive) pulse yielding an overdrive recovery time of 800ps. The measurement uses the 90% point of the output transition to ensure that linear operation has resumed. Note: The propagation delay illustrated is dominated by the fixturing. The delta shown is accurate, but the true HFA1113 propagation delay is 500ps. TYPICAL PERFORMANCE CHARACTERISTICS Device Characterized at: V SUPPLY = ±5V, AV = +2V/V, RL = 100Ω, Unless Otherwise Specified. PARAMETERS CONDITIONS TEMPERATURE TYPICAL UNITS +25oC 8 mV Full 10 µV/oC Output Offset Voltage AV = +1, VCM = 0V Average Offset Voltage Drift Versus Temperature +Input Current AV = +1, VCM = 0V +25oC 25 µA +Input Resistance AV = +1, ∆VCM = 2V +25oC 50 kΩ -Input Resistance +25 C 300 Ω +Input Noise Voltage * f = 100kHz +25oC 9 nV/√Hz f = 100kHz +25oC 37 pA/√Hz Full ±2.8 V Input Capacitance +25oC 2.2 pF Gain +25oC 0.99 V/V +Input Noise Current * o Input Common Mode Range AV = +1, VIN = 2V o Gain AV = +2, VIN = 1V +25 C 1.98 V/V DC Non-Linearity * VOUT = ±2V Full Scale +25oC 0.02 % AV = -1, RL = 100Ω +25oC ±3.3 V Full Output Voltage * AV = -1, RL = 100Ω Output Current * +25oC AV = -1, RL = 50Ω DC Closed Loop Output Resistance -3dB Bandwidth * RL = Open AV = -1, VOUT = 200mV P-P V ±60 mA 0oC ±50 mA o +25 C 0.3 Ω Full 24 mA +25oC 800 MHz -55oC AV = -1, RL = 50Ω Quiescent Supply Current * to ±3.0 +125oC to o AV = +1, VOUT = 200mVP-P +25 C 850 MHz AV = +2, VOUT = 200mVP-P +25oC 550 MHz Spec Number 208 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. TYPICAL PERFORMANCE CHARACTERISTICS (Continued) Device Characterized at: V SUPPLY = ±5V, AV = +2V/V, RL = 100Ω, Unless Otherwise Specified. PARAMETERS Slew Rate Full Power Bandwidth (Note 1) Gain Flatness (Note 1) Gain Flatness (Note 1) Gain Flatness (Note 1) Linear Phase Deviation (Note 1) 2nd Harmonic Distortion (Note 1) 3rd Harmonic Distortion (Note 1) 2nd Harmonic Distortion (Note 1) CONDITIONS AV = -1, VOUT = 5VP-P 3rd Harmonic Distortion (Note 1) UNITS 2400 V/µs o AV = +1, VOUT = 5VP-P +25 C 1500 V/µs AV = +2, VOUT = 5VP-P +25oC AV = -1, VOUT = 5VP-P 1900 V/µs o 300 MHz o +25 C AV = +1, VOUT = 5VP-P +25 C 150 MHz AV = +2, VOUT = 5VP-P +25oC To 30MHz, AV = -1 220 MHz o ±±0.02 dB o +25 C To 30MHz, AV = +1 +25 C ±±0.10 dB To 30MHz, AV = +2 +25oC ±0.015 dB To 50MHz, AV = -1 +25oC ±0.05 dB To 50MHz, AV = +1 +25 C ±0.20 dB To 50MHz, AV = +2 +25oC ±0.036 dB To 100MHz, AV = -1 +25oC ±0.10 dB o To 100MHz, AV = +2 +25 C ±0.07 dB To 100MHz, AV = -1 +25oC ±0.13 Degrees To 100MHz, AV = +1 +25oC ±0.83 Degrees o To 100MHz, AV = +2 +25 C ±0.05 Degrees 30MHz, AV = -1, VOUT = 2VP-P +25oC -52 dBc 30MHz, AV = +1, VOUT = 2VP-P +25oC -57 dBc o o 30MHz, AV = +2, VOUT = 2VP-P +25 C -52 dBc 30MHz, AV = -1, VOUT = 2VP-P +25oC -71 dBc 30MHz, AV = +1, VOUT = 2VP-P +25oC -73 dBc o 30MHz, AV = +2, VOUT = 2VP-P +25 C -72 dBc 50MHz, AV = -1, VOUT = 2VP-P +25oC -47 dBc 50MHz, AV = +1, VOUT = 2VP-P +25oC -53 dBc o -47 dBc o +25 C 50MHz, AV = -1, VOUT = 2VP-P +25 C -63 dBc 50MHz, AV = +1, VOUT = 2VP-P +25oC 50MHz, AV = +2, VOUT = 2VP-P 2nd Harmonic Distortion (Note 1) TYPICAL o +25 C 50MHz, AV = +2, VOUT = 2VP-P 3rd Harmonic Distortion (Note 1) TEMPERATURE -68 dBc o -65 dBc o +25 C 100MHz, AV = -1, VOUT = 2V P-P +25 C -41 dBc 100MHz, AV = +1, VOUT = 2V P-P +25oC -50 dBc o 100MHz, AV = +2, VOUT = 2V P-P +25 C -42 dBc 100MHz, AV = -1, VOUT = 2V P-P +25oC -55 dBc 100MHz, AV = +1, VOUT = 2V P-P +25oC -49 dBc -62 dBc 100MHz, AV = +2, VOUT = 2V P-P o +25 C Spec Number 209 511106-883 HFA1113 DESIGN INFORMATION (Continued) The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied. TYPICAL PERFORMANCE CHARACTERISTICS (Continued) Device Characterized at: V SUPPLY = ±5V, AV = +2V/V, RL = 100Ω, Unless Otherwise Specified. PARAMETERS 3rd Order Intercept (Note 1) 1dB Compression (Note 1) Reverse Isolation (S12) (Note 1) Rise and Fall Time Overshoot (Note 1) Settling Time (Note 1) Differential Gain CONDITIONS 100MHz TEMPERATURE TYPICAL UNITS o 28 dBm o +25 C 300MHz +25 C 13 dBm 100MHz +25oC 19 dBm 300MHz +25o C 12 dBm 40MHz +25 C -70 dB 100MHz +25oC -60 dB 600MHz +25o C -32 dB AV = -1, VOUT = 0.5V P-P +25 C 500 ps AV = +1, VOUT = 0.5VP-P +25oC 480 ps AV = +2, VOUT = 0.5VP-P +25oC 700 ps o o o AV = -1, VOUT = 0.5V P-P +25 C 12 % AV = +1, VOUT = 0.5VP-P +25oC 45 % AV = +2, VOUT = 0.5VP-P +25oC 6 % o AV = +2, to 0.1%, VOUT = 2V to 0V +25 C 13 ns AV = +2, to 0.05%, VOUT = 2V to 0V +25oC 20 ns AV = +2, to 0.02%, VOUT = 2V to 0V +25oC 36 ns o AV = +2, RL = 150Ω, NTSC +25 C 0.02 % Differential Phase AV = +2, RL = 150Ω, NTSC +25oC 0.04 Degrees Overdrive Recovery Time, (2X Overdrive) VIN = ±1V, VH = +1V, VL = -1V +25oC 0.75 ns Clamp Accuracy AV = -1, VIN = ±1.6V, VH = +1V, VL = -1V +25 C ±100 mV Clamped Overshoot VIN = ±1V, VH = +1V, VL = -1V, Input tR / tF = 2ns +25oC 7 % Negative Clamp Range (VL) +25oC -5.0 to +2.0 V Positive Clamp Range (VH) +25oC Clamp Input Bias Current VH = +1V, VL = -1V Clamp Input Bandwidth VIN = ±100mV, VH or VL = 100mVP-P o -2.0 to +5.0 V o 50 µA o 500 MHz +25 C +25 C NOTE: 1. See Typical Performance Curves for more information. All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Spec Number 210 511106-883