RFD10P03L, RFD10P03LSM, RFP10P03L Data Sheet July 1999 10A, 30V, 0.200 Ohm, Logic Level, P-Channel Power MOSFET 3515.2 Features • 10A, 30V These products are P-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits. Formerly developmental type TA49205. • rDS(ON) = 0.200Ω • Temperature Compensating PSPICE® Model • PSPICE Thermal Model • Peak Current vs Pulse Width Curve • UIS Rating Curve • 175oC Operating Temperature Symbol Ordering Information PART NUMBER File Number D PACKAGE BRAND RFD10P03L TO-251AA 10P03L RFD10P03LSM TO-252AA 10P03L RFP10P03L TO-220AB F10P03L G S NOTE: When ordering, use the entire part number. Add the suffix, 9A, to obtain the TO-252AA variant in tape and reel, i.e. RFD10P03LSM9A.. Packaging JEDEC TO-251AA JEDEC TO-252AA DRAIN (FLANGE) SOURCE DRAIN GATE DRAIN (FLANGE) GATE SOURCE JEDEC TO-220AB SOURCE DRAIN GATE DRAIN (FLANGE) 7-3 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFD10P03L, RFD10P03LSM, RFP10P03L Absolute Maximum Ratings TC = 25oC Unless Otherwise Specifie RFD10P03L, RFD10P03LSM, RFP10P03L -30 -30 ±10 Drain to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20KΩ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current RMS Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Single Pulse Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL (0.063in (1.6mm) from case for 10s) UNITS V V V 10 See Figure 5 Refer to UIS Curve 65 0.43 -55 to 175 300 A W W/oC oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 11) -30 - - V Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 12) -1 - -2 V - - -1 µA Zero Gate Voltage Drain Current IDSS Gate to Source Leakage Current IGSS VDS = -30V, - - -50 µA VGS = ±10V - - ±100 nA ID = 10A, VGS = -5V (Figures 9, 10) - - 0.200 Ω 0.220 Ω - - 100 ns VGS = 0V Drain to Source On Resistance (Note 1) rDS(ON) TC = 25oC TC = 150oC ID = 10A, VGS = -4.5V (Figures 9, 10) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge VDD = 15V, ID ≅ 10A, RL = 1.5Ω, RGS = 5Ω, VGS = -5V (Figure 13) - 15 - ns tr - 50 - ns td(OFF) - 35 - ns tf - 20 - ns tOFF - - 80 ns - 25 30 nC Qg(TOT) VGS = 0 to -10V Gate Charge at -5V Qg(-5) VGS = 0 to -5V Threshold Gate Charge Qg(TH) VGS = 0 to -1V Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Thermal Resistance, Junction to Case RθJC Thermal Resistance, Junction to Ambient RθJA VDD = -24V, ID ≅ 10A, RL = 2.4Ω Ig(REF) = -0.25mA (Figure 14) VDS = -25V, VGS = 0V, f = 1MHz (Figure 15) RFD10P03L, RFD10P03LSM - 13 16 nC - 1.2 1.5 nC - 1035 - pF - 340 - pF - 35 - pF - - 2.30 oC/W - - 100 oC/W 80 oC/W RFP10P03L Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Forward Voltage Reverse Recovery Time VSD trr NOTE: 2. Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 2%. 7-4 TEST CONDITIONS MIN TYP MAX UNITS ISD = -10A - - -1.5 V ISD = -10A, dISD/dt = -100A/µs - - 75 ns RFD10P03L, RFD10P03LSM, RFP10P03L 1.2 -12 1.0 -10 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER Typical Performance Curves Unless Otherwise Specified 0.8 0.6 0.4 -8 -6 -4 -2 0.2 0 25 0 0 25 50 75 100 125 TC , CASE TEMPERATURE (oC) 175 150 75 150 125 100 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE ZθJC, NORMALIZED THERMAL IMPEDANCE 50 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2.0 1.0 0.5 0.2 PDM 0.1 0.1 0.05 0.02 0.01 t1 t2 SINGLE PULSE 0.01 10-5 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC+ TC 10-4 10-3 10-2 10-1 t, RECTANGULAR PULSE DURATION (s) 101 100 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE ID , DRAIN CURRENT (A) TJ = MAX RATED TC = 25oC 100µs -10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) -1 -1 10ms VDSS MAX = -30V 100ms DC -10 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 7-5 -100 IDM , PEAK CURRENT CAPABILITY (A) -100 -100 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT CAPABILITY AS FOLLOWS: VGS = -10V 175 – T C I = I 25 ------------------------ 150 VGS = -5V -10 -5 10-5 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 FIGURE 5. PEAK CURRENT CAPABILITY 101 RFD10P03L, RFD10P03LSM, RFP10P03L Typical Performance Curves Unless Otherwise Specified (Continued) -50 -25 IAS , AVALANCHE CURRENT (A) STARTING TJ = 25oC PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX TC = 25oC ID, DRAIN CURRENT (A) -20 -10 VGS = -10V VGS = -4V -15 STARTING TJ = 150oC If R = 0 tAV = (L) (IAS)/(1.3 RATED BVDSS - VDD) IF R ≠ 0 tAV = (L/R) ln [(IAS*R)/(1.3 RATED BVDSS - VDD) + 1] -1 0.01 VGS = -5V 0.1 1 tAV, TIME IN AVALANCHE (ms) VGS = -3.5V -10 VGS = -3V -5 0 10 0 -2 -1 -3 -5 -4 VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 400 PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX VDD = -15V 25oC 175oC -15 -10 -5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC ON RESISTANCE (mΩ) -20 -55oC rDS(ON), DRAIN TO SOURCE ID(ON), ON-STATE DRAIN CURRENT (A) -25 FIGURE 7. SATURATION CHARACTERISTICS 300 ID = -20A ID = -10A ID = -2.5A 100 0 0 -1.5 -3.0 -4.5 ID = -5A 200 0 -2 -6.0 -4 VGS, GATE TO SOURCE VOLTAGE (V) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE 1.2 1.5 1.0 0.5 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 7-6 -10 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = -5V, ID = -10A 0 -80 -8 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS 2.0 -6 200 ID =- 250uA 1.1 1.0 0.9 0.8 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE RFD10P03L, RFD10P03LSM, RFP10P03L Typical Performance Curves Unless Otherwise Specified (Continued) 150 1.2 VDD = -15V, ID = -10A, RL= 1.50Ω VGS = VDS, ID = -250µA SWITCHING TIME (ns) NORMALIZED GATE THRESHOLD VOLTAGE 125 1.0 0.8 tr 100 td(OFF) 75 tf 50 0.6 td(ON) 25 0.4 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 160 0 200 FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE -3.75 -22.5 RL = 3.0Ω IG(REF) = -0.25mA -15 -7.5 -2.50 0.75 BVDSS 0.75 BVDSS 0.50 BVDSS 0.50 BVDSS 0.25 BVDSS 0.25 BVDSS -1.25 VGS = -5V CISS 1000 20 IG(REF) IG(ACT) t, TIME ( µs) 80 VGS = 0V, f = 0.1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD 800 600 COSS 400 200 CRSS 0.00 0 50 1200 C, CAPACITANCE (pF) VDD = BVDSS VDD =BVDSS 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 13. SWITCHING TIME vs GATE RESISTANCE -5.00 VGS , GATE TO SOURCE VOLTAGE (V) VDS , DRAIN TO SOURCE VOLTAGE (V) -30 0 0 IG(REF) 0 IG(ACT) -5 -10 -15 -20 VDS , DRAIN TO SOURCE VOLTAGE (V) -25 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT FIGURE 15. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE Test Circuits and Waveforms VDS tAV L VARY tP TO OBTAIN REQUIRED PEAK IAS 0 - RG + 0V VGS DUT tP IAS VDD IAS VDS tP 0.01Ω FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT 7-7 VDD BVDSS FIGURE 17. UNCLAMPED ENERGY WAVEFORMS RFD10P03L, RFD10P03LSM, RFP10P03L Test Circuits and Waveforms (Continued) tON tOFF td(OFF) td(ON) tf tr 0 RL - DUT VGS VDS VDD RG + 10% 10% 90% 90% VGS 0 10% 50% 50% PULSE WIDTH 90% FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS VDS RL VDS Qg(TH) 0 VGS= -1V VGS - Qg(-5) + DUT VGS= -5V -VGS VDD VGS= -10V VDD IG(REF) Qg(TOT) 0 Ig(REF) FIGURE 20. GATE CHARGE TEST CIRCUIT 7-8 FIGURE 21. GATE CHARGE WAVEFORMS RFD10P03L, RFD10P03LSM, RFP10P03L PSpice Electrical Model .SUBCKT RFD10P03L 2 1 3 REV 22 Aug 96 CA 12 8 1.29e-9 CB 15 14 9.90e-10 CIN 6 8 1.01e-9 LDRAIN ESG - DBODY 5 7 DBODYMOD DBREAK 7 11 DBREAKMOD DPLCAP 10 6 DPLCAPMOD 10 DRAIN 2 5 + 8 6 RLDRAIN RSLC1 51 + EBREAK 5 11 17 18 -36.49 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 5 10 8 6 1 EVTHRES 6 21 19 8 1 EVTEMP 6 20 18 22 1 RSLC2 5 51 EBREAK ESLC + 17 18 - - 50 DPLCAP RDRAIN EVTHRES + 19 8 IT 8 17 1 LGATE LDRAIN 2 5 1e-9 LGATE 1 9 3.40e-9 LSOURCE 3 7 3.22e-9 EVTEMP RGATE GATE 1 9 - 20 21 16 MWEAK 6 18 + 22 DBODY 11 MMED DBREAK MSTRO RLGATE LSOURCE CIN MMED 16 6 8 8 MmedMOD MSTRO 16 6 8 8 MstroMOD MWEAK 16 21 8 8 MweakMOD 8 SOURCE 3 7 RSOURCE RLSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 68.25e-3 RGATE 9 20 2.54 RSCL1 5 51 RSCLMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RSourceMOD 25.00e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A 12 S2A 13 8 14 13 S1B 18 RVTEMP CB 6 8 EGS - 19 14 + + S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD 17 S2B 13 CA RBREAK 15 - IT VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESCL 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*33),5.0))} .MODEL DBODYMOD D (IS=9.15e-13 RS=3.25e-2 IKF=0.05 N=0.97 TRS1=4.11e-5 TRS2=2.03e-6 CJO=1.13e-9 M=0.40 TT=3.72e-8) .MODEL DBREAKMOD D ( RS=2.62e-1 TRS1=1.74e-3 TRS2=-3.81e-6) .MODEL DPLCAPMOD D (CJO=1.46e-10 IS=1e-30 N=10 M=0.50) .MODEL MSTRONGMOD PMOS (VTO=-1.95 KP=11.60 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MMEDMOD PMOS (VTO=-1.65 KP=1.00 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.54) .MODEL MWEAKMOD PMOS (VTO=-1.43 KP=0.09 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=25.4 RS=0.1) .MODEL RBREAKMOD RES (TC1=9.17e-4 TC2=-2.74e-7) .MODEL RDRAINMOD RES (TC1=6.35e-3 TC2=1.98e-5) .MODEL RSOURCEMOD RES (TC1=0 TC2=0) .MODEL RSCLMOD RES (TC1=2e-3 TC2=0) .MODEL RVTHRESMOD RES (TC1=1.23e-3 TC2=1.97e-6) .MODEL RVTEMPMOD RES (TC1=-1.18e-3 TC2=1.44e-6) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=4.80 VOFF=1.80) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=1.80 VOFF=4.80) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.40 VOFF=-3.40) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.40 VOFF=-0.40) ENDS For further discussion of the PSPICE model consult A New PSPICE Sub-circuit for the Power MOSFet Featuring Global Temperature Options; authored by William J. Hepp and C. Frank Wheatley. 7-9 RFD10P03L, RFD10P03LSM, RFP10P03L PSpice Thermal Model 7 JUNCTION REV 29 Aug 96 RFP10P03L CTHERM1 7 6 5.00e-7 CTHERM2 6 5 5.35e-4 CTHERM3 5 4 5.50e-4 CTHERM4 4 3 1.75e-3 CTHERM5 3 2 1.25e-2 CTHERM6 2 1 0.45 RTHERM1 CTHERM1 6 RTHERM1 7 6 1.00e-2 RTHERM2 6 5 2.05e-2 RTHERM3 5 4 5.39e-2 RTHERM4 4 3 5.45e-1 RTHERM5 3 2 1.01 RTHERM6 2 1 0.50 RTHERM2 CTHERM2 5 RTHERM3 RFD10P03L, RFD10P03LSM CTHERM1 7 6 5.00e-7 CTHERM2 6 5 5.35e-4 CTHERM3 5 4 5.50e-4 CTHERM4 4 3 1.75e-3 CTHERM5 3 2 1.25e-2 CTHERM6 2 1 0.11 CTHERM3 4 RTHERM4 RTHERM1 7 6 1.00e-2 RTHERM2 6 5 2.05e-2 RTHERM3 5 4 5.39e-2 RTHERM4 4 3 5.45e-1 RTHERM5 3 2 1.01 RTHERM6 2 1 0.50 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 1 CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 7-10 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029