IRFB7430 Data Sheet (254 KB, EN)

StrongIRFETTM
IRFB7430PbF
Applications
l
l
l
l
l
l
l
l
l
HEXFET® Power MOSFET
Brushed Motor drive applications
BLDC Motor drive applications
Battery powered circuits
Half-bridge and full-bridge topologies
Synchronous rectifier applications
Resonant mode power supplies
OR-ing and redundant power switches
DC/DC and AC/DC converters
DC/AC Inverters
D
G
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
40V
1.0mΩ
1.3mΩ
409A
ID (Package Limited)
195A
c
D
Benefits
l
l
l
l
l
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
Fully Characterized Capacitance and Avalanche
SOA
Enhanced body diode dV/dt and dI/dt Capability
Lead-Free
RoHS Compliant, Halogen-Free*
G
D
S
TO-220AB
IRFB7430PbF
G
D
S
Gate
Drain
Source
Ordering Information
Base Part Number
Package Type
TO-220
ID = 100A
IRFB7430PbF
Limited By Package
400
4.0
T J = 125°C
2.0
300
200
100
T J = 25°C
0
0.0
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
Complete Part Number
Quantity
50
500
6.0
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRFB7430PbF
Standard Pack
Form
Tube
www.irf.com © 2015 International Rectifier
25
50
75
100
125
150
175
T C , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
Submit Datasheet Feedback
February 19, 2015
IRFB7430PbF
Absolute Maximum Ratings
Symbol
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
Max.
Symbol
RθJC
RθCS
RθJA
409
289
195
1524
375
2.5
± 20
-55 to + 175
d
j
A
W
W/°C
V
°C
300
10lbf in (1.1N m)
x
e
k
d
Units
c
c
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
VGS
Gate-to-Source Voltage
TJ
Operating Junction and
TSTG
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
Single Pulse Avalanche Energy
EAS (Thermally limited)
EAS (Thermally limited)
Single Pulse Avalanche Energy
Avalanche Current
IAR
Repetitive Avalanche Energy
EAR
Thermal Resistance
x
760
1452
See Fig. 14, 15, 22a, 22b
d
Parameter
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
mJ
A
mJ
Typ.
Max.
Units
–––
0.50
–––
0.40
–––
62
°C/W
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Units
40
–––
–––
V
Breakdown Voltage Temp. Coefficient
–––
0.014
–––
V/°C
Reference to 25°C, ID = 1.0mA
Static Drain-to-Source On-Resistance
–––
1.0
1.3
mΩ
VGS = 10V, ID = 100A
V(BR)DSS
Drain-to-Source Breakdown Voltage
ΔV(BR)DSS/ΔTJ
RDS(on)
Conditions
VGS = 0V, ID = 250μA
VGS = 6.0V, ID
g
= 50A g
–––
1.2
–––
VGS(th)
Gate Threshold Voltage
2.2
–––
3.9
V
VDS = VGS, ID = 250μA
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
μA
VDS = 40V, VGS = 0V
–––
–––
150
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Internal Gate Resistance
–––
2.1
–––
RG
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.15mH
RG = 50Ω, IAS = 100A, VGS =10V.
„ ISD ≤ 100A, di/dt ≤ 990A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
2
www.irf.com © 2015 International Rectifier
d
VDS = 40V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Ω
… Pulse width ≤ 400μs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS .
ˆ Rθ is measured at TJ approximately 90°C..
‰ Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 54A,
*
VGS =10V.
Halogen -Free since April 30, 2014
Submit Datasheet Feedback
February 2, 2015
IRFB7430PbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
gfs
Forward Transconductance
Min.
Typ.
Max.
Units
150
–––
–––
S
VDS = 10V, ID = 100A
Conditions
nC
ID = 100A
Qg
Total Gate Charge
–––
300
460
Qgs
Gate-to-Source Charge
–––
77
–––
VDS =20V
Qgd
Gate-to-Drain ("Miller") Charge
–––
98
–––
VGS = 10V
Qsync
Total Gate Charge Sync. (Qg - Qgd)
–––
202
–––
td(on)
Turn-On Delay Time
–––
32
–––
tr
Rise Time
–––
105
–––
td(off)
Turn-Off Delay Time
–––
160
–––
RG = 2.7Ω
tf
Fall Time
–––
100
–––
VGS = 10V
Ciss
Input Capacitance
–––
14240
–––
Coss
Output Capacitance
–––
2130
–––
VDS = 25V
–––
1460
–––
ƒ = 1.0 MHz
–––
2605
–––
VGS = 0V, VDS = 0V to 32V
–––
2920
–––
VGS = 0V, VDS = 0V to 32V
Min.
Typ.
Max.
–––
–––
394
–––
–––
1576
Crss
Reverse Transfer Capacitance
Coss eff. (ER)
Effective Output Capacitance (Energy Related)
Coss eff. (TR)
Effective Output Capacitance (Time Related)
h
i
ns
g
VDD = 20V
ID = 30A
pF
g
VGS = 0V
i
h
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
c
Units
A
Pulsed Source Current
(Body Diode)
d
A
G
integral reverse
S
p-n junction diode.
VSD
Diode Forward Voltage
0.86
dv/dt
f
–––
Peak Diode Recovery
–––
trr
Reverse Recovery Time
–––
–––
52
–––
Qrr
Reverse Recovery Charge
–––
97
–––
–––
97
–––
IRRM
Reverse Recovery Current
–––
2.3
–––
3
D
showing the
(Body Diode)
ISM
Conditions
MOSFET symbol
www.irf.com © 2015 International Rectifier
TJ = 25°C, IS = 100A, VGS = 0V
1.2
V
2.7
–––
V/ns
52
–––
ns
TJ = 25°C
VR = 34V,
TJ = 125°C
IF = 100A
nC
TJ = 25°C
di/dt = 100A/μs
A
TJ = 25°C
g
TJ = 175°C, IS = 100A, VDS = 40V
g
TJ = 125°C
Submit Datasheet Feedback
February 2, 2015
IRFB7430PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
4.5V
10
4.5V
BOTTOM
100
4.5V
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 175°C
Tj = 25°C
10
1
0.1
1
10
0.1
100
Fig 3. Typical Output Characteristics
100
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 4. Typical Output Characteristics
1000
100
T J = 25°C
TJ = 175°C
10
VDS = 25V
≤60μs PULSE WIDTH
1.0
ID = 100A
VGS = 10V
1.8
1.6
1.4
1.2
1.0
0.8
0.6
2
3
4
5
6
7
Fig 6. Normalized On-Resistance vs. Temperature
Fig 5. Typical Transfer Characteristics
100000
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C oss = C ds + C gd
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Ciss
10000
Coss
Crss
1000
ID= 100A
12.0
VDS= 32V
VDS= 20V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
4.5V
www.irf.com © 2015 International Rectifier
0
50
100 150 200 250 300 350 400
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Submit Datasheet Feedback
February 2, 2015
IRFB7430PbF
10000
T J = 175°C
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
10
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100
Limited by package
10msec
10
1
DC
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
2.0
0.1
2.5
1
10
100
VDS, Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode
Forward Voltage
2.5
47
Id = 1.0mA
VDS= 0V to 32V
46
2.0
45
Energy (μJ)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
100μsec
1msec
44
43
1.5
1.0
42
0.5
41
0.0
40
0
-60 -40 -20 0 20 40 60 80 100120140160180
5
T J , Temperature ( °C )
15
20
25
30
35
40
45
VDS, Drain-to-Source Voltage (V)
Fig 11. Drain-to-Source Breakdown Voltage
RDS(on), Drain-to -Source On Resistance ( mΩ)
10
Fig 12. Typical COSS Stored Energy
6.0
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS =10V
4.0
2.0
0.0
0
200
400
600
800
1000
1200
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
IRFB7430PbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
800
700
EAR , Avalanche Energy (mJ)
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 100A
600
500
400
300
200
100
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
IRFB7430PbF
12
3.5
3.0
2.5
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
4.0
ID = 250μA
ID = 1.0mA
2.0
ID = 1.0A
10
IF = 60A
V R = 34V
8
TJ = 25°C
TJ = 125°C
6
4
1.5
2
1.0
0
-75 -50 -25
0
25 50 75 100 125 150 175
0
200
T J , Temperature ( °C )
600
800
1000
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig 17. Threshold Voltage vs. Temperature
12
300
10
IF = 100A
V R = 34V
8
TJ = 25°C
TJ = 125°C
IF = 60A
V R = 34V
250
QRR (nC)
IRRM (A)
400
diF /dt (A/μs)
6
TJ = 25°C
TJ = 125°C
200
150
4
100
2
0
50
0
200
400
600
800
1000
0
200
diF /dt (A/μs)
400
600
800
1000
diF /dt (A/μs)
Fig. 20 - Typical Stored Charge vs. dif/dt
Fig. 19 - Typical Recovery Current vs. dif/dt
260
IF = 100A
V R = 34V
QRR (nC)
220
TJ = 25°C
TJ = 125°C
180
140
100
60
0
200
400
600
800
1000
diF /dt (A/μs)
Fig. 21 - Typical Stored Charge vs. dif/dt
7
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
IRFB7430PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
• dv/dt controlled by RG
• Driver same type as D.U.T.
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
V DD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
InductorCurrent
Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
V DS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
V GS
D.U.T.
RG
+
- V DD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
8
www.irf.com © 2015 International Rectifier
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
Submit Datasheet Feedback
February 2, 2015
IRFB7430PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
IRFB7430PbF
Qualification information†
Qualification level
Moisture Sensitivity Level
RoHS compliant
Industrial
(per JEDEC JESD47F††guidelines)
TO-220
Not applicable
Yes
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Applicable version of JEDEC standard at the time of product release.
Revision History
Date
4/22/2014
Comment
• Updated data sheet with new IR corporate template.
• Updated package outline and part marking on page 9.
• Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.
2/19/2015
• Updated EAS (L =1mH) = 1452mJ on page 2
• Updated note 9 “Limited by TJmax , starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 54A, VGS =10V”. on page 2
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
10
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015