Data Sheet

Freescale Semiconductor
Technical Data
Document Number: AFT20P140--4WN
Rev. 1, 1/2014
RF Power LDMOS Transistors
N--Channel Enhancement--Mode Lateral MOSFETs
This 24 W symmetrical Doherty RF power LDMOS transistor is designed for
cellular base station applications requiring very wide instantaneous bandwidth
capability covering the frequency range of 1880 to 2025 MHz.
 Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Vdc,
IDQA = 500 mA, VGSB = 0.6 Vdc, Pout = 24 W Avg., Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF.
Frequency
Gps
(dB)
D
(%)
Output PAR
(dB)
ACPR
(dBc)
1880 MHz
17.8
41.7
7.7
--31.0
1960 MHz
17.8
41.7
7.7
--33.7
2025 MHz
17.6
41.2
7.8
--34.0
Features
 Designed for Wide Instantaneous Bandwidth Applications
 Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
 Able to Withstand Extremely High Output VSWR and Broadband Operating
Conditions
 Designed for Digital Predistortion Error Correction Systems
 In Tape and Reel. R3 Suffix = 250 Units, 32 mm Tape Width, 13--inch Reel.
AFT20P140--4WNR3
AFT20P140--4WGNR3
1880--2025 MHz, 24 W AVG., 28 V
AIRFAST RF POWER LDMOS
TRANSISTORS
OM--780--4L
PLASTIC
AFT20P140--4WNR3
OM--780G--4L
PLASTIC
AFT20P140--4WGNR3
Carrier
1 RFoutA/VDSA
RFinA/VGSA 3
(1)
RFinB/VGSB 4
2 RFoutB/VDSB
Peaking
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Pin Connections
1. Pin connections 1 and 2 are DC coupled
and RF independent.
 Freescale Semiconductor, Inc., 2013--2014. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
AFT20P140--4WNR3 AFT20P140--4WGNR3
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +65
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
--65 to +150
C
Case Operating Temperature Range
TC
--40 to +125
C
Operating Junction Temperature Range (1,2)
TJ
--40 to +225
C
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 74C, 24 W 2--Carrier W--CDMA, 28 Vdc, IDQA = 500 mA,
VGSB = 0.6 Vdc, f1 = 1880 MHz, f2 = 1910 MHz
Case Temperature 88C, 118 W 2--Carrier W--CDMA, 28 Vdc, IDQA = 500 mA,
VGSB = 0.6 Vdc, f1 = 1880 MHz, f2 = 1910 MHz
RJC
C/W
0.60
0.42
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2
Machine Model (per EIA/JESD22--A115)
B
Charge Device Model (per JESD22--C101)
IV
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
5
Adc
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage (6)
(VDS = 10 Vdc, ID = 150 Adc)
VGS(th)
0.8
1.2
1.6
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, IDA = 500 mAdc, Measured in Functional Test)
VGSA(Q)
1.3
1.9
2.3
Vdc
Drain--Source On--Voltage (4)
(VGS = 10 Vdc, ID = 2.0 Adc)
VDS(on)
0.1
0.15
0.3
Vdc
Characteristic
Off Characteristics
(4)
On Characteristics (5)
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select
Documentation/Application Notes -- AN1955.
4. Side A and Side B are tied together for these measurements.
5. VDDA and VDDB must be tied together and powered by a single DC power supply.
6. Each side of device measured separately.
(continued)
AFT20P140--4WNR3 AFT20P140--4WGNR3
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
(1,2,3,4)
Functional Tests — 1900 MHz
(In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.6 Vdc,
Pout = 24 W Avg., f1 = 1880 MHz, f2 = 1910 MHz, 2--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 20 MHz Offset.
Power Gain
Gps
17.0
17.8
20.0
dB
Drain Efficiency
D
38.0
41.4
—
%
PAR
7.1
7.7
—
dB
ACPR
—
--33.1
--31.0
dBc
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
(1,2,3,4)
Functional Tests — 2025 MHz
(In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.6 Vdc,
Pout = 24 W Avg., f1 = 1995 MHz, f2 = 2025 MHz, 2--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 20 MHz Offset.
Power Gain
Gps
16.6
17.8
19.6
dB
Drain Efficiency
D
38.0
40.7
—
%
PAR
7.1
7.8
—
dB
ACPR
—
--33.5
--31.0
dBc
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQA = 500 mA, f = 1960 MHz
No Device Degradation
VSWR 10:1 at 32 Vdc, 170 W CW Output Power
(3 dB Input Overdrive from 130 W CW Rated Power)
Typical Performance (3) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.6 Vdc,
1880--2025 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
130
—
W
Pout @ 3 dB Compression Point (5)
P3dB
—
170
—
W

—
--22.7
—

VBWres
—
160
—
MHz
Gain Flatness in 145 MHz Bandwidth @ Pout = 24 W Avg.
GF
—
0.25
—
dB
Gain Variation over Temperature
(--30C to +85C)
G
—
0.001
—
dB/C
P1dB
—
0.003
—
dB/C
AM/PM
(Maximum value measured at the P3dB compression point across
the 1880--2025 MHz bandwidth)
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Output Power Variation over Temperature
(--30C to +85C)
1.
2.
3.
4.
VDDA and VDDB must be tied together and powered by a single DC power supply.
Part internally matched both on input and output.
Measurement made with device in a symmetrical Doherty configuration.
Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull
wing (GN) parts.
5. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.
AFT20P140--4WNR3 AFT20P140--4WGNR3
RF Device Data
Freescale Semiconductor, Inc.
3
VDDA
VGGA
C20
C16*
C6
C7
C5
C14
C2
C1
C4
R2
R3
C3
C11
C
CUT OUT AREA
Z1
R1
C23
C18
AFT20P140--4WN
Rev. 0
C15
P
C12
C8
C10
C13
C9
C17*
C19
VGGB
C22 VDDB
C21
*C16 and C17 are mounted vertically.
Figure 2. AFT20P140--4WNR3 Test Circuit Component Layout
Table 6. AFT20P140--4WNR3 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1
0.6 pF Chip Capacitor
ATC600F0R6BT250XT
ATC
C2, C3, C6, C9, C11, C12,
C13, C14
12 pF Chip Capacitors
ATC600F120JT250XT
ATC
C4
0.3 pF Chip Capacitor
ATC600F0R3BT250XT
ATC
C5, C8, C18, C19
2.2 F, 100 V Chip Capacitors
C3225X7R2A225KT
TDK
C7, C10, C20, C21
10 F, 100 V Chip Capacitors
C5750X7S2A106KT
TDK
C15
0.5 pF Chip Capacitor
ATC600F0R5BT250XT
ATC
C16, C17
6.8 F, 50 V Chip Capacitors
C4532X7R1H685KT
TDK
C22, C23
100 F, 63 V Electrolytic Capacitors
SK063M0100B5S-1012
Yageo
R1
50 , 10 W Chip Resistor
CW12010T0050GBK
ATC
R2, R3
3 , 1/4 W Chip Resistors
CRCW12063R00FKEA
Vishay
Z1
1700--2000 MHz Band, 90, 3 dB Hybrid Couplers
1P503S
Anaren
PCB
0.020, r = 3.5
RO4350B
Rogers
AFT20P140--4WNR3 AFT20P140--4WGNR3
4
RF Device Data
Freescale Semiconductor, Inc.
Gps, POWER GAIN (dB)
18.6
D
VDD = 28 Vdc, Pout = 24 W (Avg.), IDQA = 500 mA
VGSB = 0.6 Vdc, Single--Carrier W--CDMA, 3.84 MHz
Channel Bandwidth
18.4
18.2
42
41
40
39
Gps
Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
18
17.8
PARC
17.6
--30
--1.4
--32
--1.6
--34
--36
17.4
ACPR
17.2
17
1850
1875
1900
1925
1950
1975
--38
2000
2025
--40
2050
--1.8
--2
--2.2
PARC (dB)
43
18.8
ACPR (dBc)
19
D, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
--2.4
f, FREQUENCY (MHz)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 24 Watts Avg.
--20
IM3--U
--30
IM3--L
VDD = 28 Vdc
Pout = 16 W (PEP)
IDQA = 500 mA
VGSB = 0.6 Vdc
--40
IM5--L
IM5--U
--50
IM7--L
--60
--70
Two--Tone Measurements
(f1 + f2)/2 = Center Frequency of 1960 MHz
1
10
IM7--U
100
300
TWO--TONE SPACING (MHz)
18.5
0
18
17.5
17
16.5
16
VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.6 mA
f = 1960 MHz, Single--Carrier W--CDMA
3.84 MHz Channel Bandwidth
D
--1
--2
--3
50
--20
40
ACPR
--2 dB = 26 W
35
--3 dB = 35 W
--4
--5
10
--15
45
Gps
--1 dB = 19.9 W
55
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF
20
30
40
PARC
50
--25
--30
ACPR (dBc)
1
D DRAIN EFFICIENCY (%)
19
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 4. Intermodulation Distortion Products
versus Two--Tone Spacing
--35
30
--40
25
--45
60
Pout, OUTPUT POWER (WATTS)
Figure 5. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
AFT20P140--4WNR3 AFT20P140--4WGNR3
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS
2025 MHz
17
20
1880 MHz
16
2025 MHz
1960 MHz
Gps
15
1
10
100
10
0
200
0
--10
--20
--30
--40
ACPR (dBc)
60
VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.6 Vdc
D
Single--Carrier W--CDMA, 3.84 MHz Channel
20 Bandwidth, Input Signal PAR = 9.9 dB @
50
2025 MHz
0.01% Probability on CCDF
1960 MHz
19
40
1880 MHz
1960
MHz
1880 MHz
ACPR
18
30
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
21
--50
--60
Pout, OUTPUT POWER (WATTS) AVG.
Figure 6. Single--Carrier W--CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
23
21
GAIN (dB)
19
VDD = 28 Vdc
Pin = 0 dBm
IDQA = 500 mA
VGSB = 0.6 Vdc
Gain
17
15
13
11
1600
1700
1800
1900
2000
2100
2200
2300
2400
f, FREQUENCY (MHz)
Figure 7. Broadband Frequency Response
AFT20P140--4WNR3 AFT20P140--4WGNR3
6
RF Device Data
Freescale Semiconductor, Inc.
VDD = 28 Vdc, IDQA = 511 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
()
Zin
()
Zload (1)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
1880
6.86 - j8.74
6.24 + j8.58
2.15 - j5.34
19.2
50.0
101
54.0
-13
1960
10.2 - j5.77
8.98 + j6.06
2.20 - j5.78
19.1
49.9
98
53.3
-14
2025
8.51 - j1.35
8.23 + j2.78
2.14 - j6.19
18.9
50.1
102
52.6
-15
Max Output Power
P3dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2.02 - j5.66
16.9
50.8
121
55.1
-17
10.0 + j5.72
2.08 - j6.06
16.7
50.7
118
53.6
-18
8.44 + j1.79
2.08 - j6.50
16.5
50.8
121
53.0
-19
f
(MHz)
Zsource
()
Zin
()
1880
6.86 - j8.74
6.77 + j9.00
1960
10.2 - j5.77
2025
8.51 - j1.35
Zload
()
(2)
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 8. Single Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQA = 511 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
()
Zin
()
1880
6.86 - j8.74
6.66 + j8.74
1960
10.2 - j5.77
9.17 + j5.67
2025
8.51 - j1.35
7.90 + j2.75
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
4.65 - j4.23
21.6
48.4
69
64.6
-21
4.26 - j3.66
21.6
48.0
63
64.1
-22
3.73 - j4.44
21.2
48.5
70
62.7
-21
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
1880
6.86 - j8.74
7.01 + j9.10
4.65 - j4.32
19.5
49.0
79
65.6
-27
1960
10.2 - j5.77
9.95 + j5.36
4.09 - j3.61
19.6
48.6
73
65.0
-30
2025
8.51 - j1.35
8.11 + j2.05
3.50 - j4.62
19.0
49.3
86
63.7
-28
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 9. Single Side Load Pull Performance — Maximum Drain Efficiency Tuning
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT20P140--4WNR3 AFT20P140--4WGNR3
RF Device Data
Freescale Semiconductor, Inc.
7
P1dB -- TYPICAL LOAD PULL CONTOURS — 1960 MHz
--2
--3
46.5
E
--4
49
49.5
--5
48.5
48
47.5
47
P
--6
--7
--8
50
--3
IMAGINARY ()
IMAGINARY ()
--2
46
48
--4
54 56
52
62
64
58 60
E
--5
P
--6
--7
2
1
3
4
6
5
--8
7
1
2
3
4
6
5
7
REAL ()
REAL ()
Figure 10. P1dB Load Pull Output Power Contours (dBm)
Figure 11. P1dB Load Pull Efficiency Contours (%)
--2
--2
--3
--3
22
E
--4
IMAGINARY ()
IMAGINARY ()
--30
21.5
--5
P
--6
18
--8
1
19.5
18.5 19
--7
2
21
20.5
3
--28
--24
--26
--22
E
--4
--20
--5
--18
P
--6
20
--16
--14
--7
4
6
5
7
--8
1
2
3
4
5
6
REAL ()
REAL ()
Figure 12. P1dB Load Pull Gain Contours (dB)
Figure 13. P1dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
7
Gain
Drain Efficiency
Linearity
Output Power
AFT20P140--4WNR3 AFT20P140--4WGNR3
8
RF Device Data
Freescale Semiconductor, Inc.
P3dB -- TYPICAL LOAD PULL CONTOURS — 1960 MHz
--2
--2
47
--3
47.5
E
--4
49.5
--5
48.5
48
50
50.5
--6
49
IMAGINARY ()
IMAGINARY ()
--3
P
--7
--8
E
--4
64
--5
--6
48
--7
1
2
3
4
6
5
--8
7
62
P
50 52
1
60
58
2
54
3
56
4
6
5
7
REAL ()
Figure 14. P3dB Load Pull Output Power Contours (dBm)
Figure 15. P3dB Load Pull Efficiency Contours (%)
--2
--2
--3
--3
20
E
--4
IMAGINARY ()
IMAGINARY ()
REAL ()
19.5
--5
19
--6
P
18
--7
--8
16
1
18.5
16.5
2
17
4
5
6
7
--32
--30
E
--4
--28
--26
--5
--24
--22
--6
P
--8
--20
--18
--7
17.5
3
--34
1
2
3
4
5
6
REAL ()
REAL ()
Figure 16. P3dB Load Pull Gain Contours (dB)
Figure 17. P3dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
7
Gain
Drain Efficiency
Linearity
Output Power
AFT20P140--4WNR3 AFT20P140--4WGNR3
RF Device Data
Freescale Semiconductor, Inc.
9
PACKAGE DIMENSIONS
AFT20P140--4WNR3 AFT20P140--4WGNR3
10
RF Device Data
Freescale Semiconductor, Inc.
AFT20P140--4WNR3 AFT20P140--4WGNR3
RF Device Data
Freescale Semiconductor, Inc.
11
AFT20P140--4WNR3 AFT20P140--4WGNR3
12
RF Device Data
Freescale Semiconductor, Inc.
AFT20P140--4WNR3 AFT20P140--4WGNR3
RF Device Data
Freescale Semiconductor, Inc.
13
AFT20P140--4WNR3 AFT20P140--4WGNR3
14
RF Device Data
Freescale Semiconductor, Inc.
AFT20P140--4WNR3 AFT20P140--4WGNR3
RF Device Data
Freescale Semiconductor, Inc.
15
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following documents, software and tools to aid your design process.
Application Notes
 AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
 .s2p File
Development Tools
 Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Apr. 2013
 Initial Release of Data Sheet
1
Jan. 2014
 Added part number AFT20P140--4WGNR3, p. 1
 Added OM780G--4L isometric, p. 1, and Mechanical Outline, pp. 13--15
AFT20P140--4WNR3 AFT20P140--4WGNR3
16
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2013--2014 Freescale Semiconductor, Inc.
AFT20P140--4WNR3 AFT20P140--4WGNR3
Document
Number:
RF Device
DataAFT20P140--4WN
Rev.
1, 1/2014Semiconductor, Inc.
Freescale
17