Freescale Semiconductor Technical Data Document Number: AFT20P140--4WN Rev. 1, 1/2014 RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs This 24 W symmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 1880 to 2025 MHz. Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.6 Vdc, Pout = 24 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) D (%) Output PAR (dB) ACPR (dBc) 1880 MHz 17.8 41.7 7.7 --31.0 1960 MHz 17.8 41.7 7.7 --33.7 2025 MHz 17.6 41.2 7.8 --34.0 Features Designed for Wide Instantaneous Bandwidth Applications Greater Negative Gate--Source Voltage Range for Improved Class C Operation Able to Withstand Extremely High Output VSWR and Broadband Operating Conditions Designed for Digital Predistortion Error Correction Systems In Tape and Reel. R3 Suffix = 250 Units, 32 mm Tape Width, 13--inch Reel. AFT20P140--4WNR3 AFT20P140--4WGNR3 1880--2025 MHz, 24 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTORS OM--780--4L PLASTIC AFT20P140--4WNR3 OM--780G--4L PLASTIC AFT20P140--4WGNR3 Carrier 1 RFoutA/VDSA RFinA/VGSA 3 (1) RFinB/VGSB 4 2 RFoutB/VDSB Peaking (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Pin Connections 1. Pin connections 1 and 2 are DC coupled and RF independent. Freescale Semiconductor, Inc., 2013--2014. All rights reserved. RF Device Data Freescale Semiconductor, Inc. AFT20P140--4WNR3 AFT20P140--4WGNR3 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +65 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg --65 to +150 C Case Operating Temperature Range TC --40 to +125 C Operating Junction Temperature Range (1,2) TJ --40 to +225 C Symbol Value (2,3) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 74C, 24 W 2--Carrier W--CDMA, 28 Vdc, IDQA = 500 mA, VGSB = 0.6 Vdc, f1 = 1880 MHz, f2 = 1910 MHz Case Temperature 88C, 118 W 2--Carrier W--CDMA, 28 Vdc, IDQA = 500 mA, VGSB = 0.6 Vdc, f1 = 1880 MHz, f2 = 1910 MHz RJC C/W 0.60 0.42 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 Machine Model (per EIA/JESD22--A115) B Charge Device Model (per JESD22--C101) IV Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 5 Adc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 Adc Gate Threshold Voltage (6) (VDS = 10 Vdc, ID = 150 Adc) VGS(th) 0.8 1.2 1.6 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, IDA = 500 mAdc, Measured in Functional Test) VGSA(Q) 1.3 1.9 2.3 Vdc Drain--Source On--Voltage (4) (VGS = 10 Vdc, ID = 2.0 Adc) VDS(on) 0.1 0.15 0.3 Vdc Characteristic Off Characteristics (4) On Characteristics (5) 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. 4. Side A and Side B are tied together for these measurements. 5. VDDA and VDDB must be tied together and powered by a single DC power supply. 6. Each side of device measured separately. (continued) AFT20P140--4WNR3 AFT20P140--4WGNR3 2 RF Device Data Freescale Semiconductor, Inc. Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit (1,2,3,4) Functional Tests — 1900 MHz (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.6 Vdc, Pout = 24 W Avg., f1 = 1880 MHz, f2 = 1910 MHz, 2--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 20 MHz Offset. Power Gain Gps 17.0 17.8 20.0 dB Drain Efficiency D 38.0 41.4 — % PAR 7.1 7.7 — dB ACPR — --33.1 --31.0 dBc Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio (1,2,3,4) Functional Tests — 2025 MHz (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.6 Vdc, Pout = 24 W Avg., f1 = 1995 MHz, f2 = 2025 MHz, 2--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 20 MHz Offset. Power Gain Gps 16.6 17.8 19.6 dB Drain Efficiency D 38.0 40.7 — % PAR 7.1 7.8 — dB ACPR — --33.5 --31.0 dBc Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQA = 500 mA, f = 1960 MHz No Device Degradation VSWR 10:1 at 32 Vdc, 170 W CW Output Power (3 dB Input Overdrive from 130 W CW Rated Power) Typical Performance (3) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.6 Vdc, 1880--2025 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 130 — W Pout @ 3 dB Compression Point (5) P3dB — 170 — W — --22.7 — VBWres — 160 — MHz Gain Flatness in 145 MHz Bandwidth @ Pout = 24 W Avg. GF — 0.25 — dB Gain Variation over Temperature (--30C to +85C) G — 0.001 — dB/C P1dB — 0.003 — dB/C AM/PM (Maximum value measured at the P3dB compression point across the 1880--2025 MHz bandwidth) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Output Power Variation over Temperature (--30C to +85C) 1. 2. 3. 4. VDDA and VDDB must be tied together and powered by a single DC power supply. Part internally matched both on input and output. Measurement made with device in a symmetrical Doherty configuration. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. 5. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF. AFT20P140--4WNR3 AFT20P140--4WGNR3 RF Device Data Freescale Semiconductor, Inc. 3 VDDA VGGA C20 C16* C6 C7 C5 C14 C2 C1 C4 R2 R3 C3 C11 C CUT OUT AREA Z1 R1 C23 C18 AFT20P140--4WN Rev. 0 C15 P C12 C8 C10 C13 C9 C17* C19 VGGB C22 VDDB C21 *C16 and C17 are mounted vertically. Figure 2. AFT20P140--4WNR3 Test Circuit Component Layout Table 6. AFT20P140--4WNR3 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 0.6 pF Chip Capacitor ATC600F0R6BT250XT ATC C2, C3, C6, C9, C11, C12, C13, C14 12 pF Chip Capacitors ATC600F120JT250XT ATC C4 0.3 pF Chip Capacitor ATC600F0R3BT250XT ATC C5, C8, C18, C19 2.2 F, 100 V Chip Capacitors C3225X7R2A225KT TDK C7, C10, C20, C21 10 F, 100 V Chip Capacitors C5750X7S2A106KT TDK C15 0.5 pF Chip Capacitor ATC600F0R5BT250XT ATC C16, C17 6.8 F, 50 V Chip Capacitors C4532X7R1H685KT TDK C22, C23 100 F, 63 V Electrolytic Capacitors SK063M0100B5S-1012 Yageo R1 50 , 10 W Chip Resistor CW12010T0050GBK ATC R2, R3 3 , 1/4 W Chip Resistors CRCW12063R00FKEA Vishay Z1 1700--2000 MHz Band, 90, 3 dB Hybrid Couplers 1P503S Anaren PCB 0.020, r = 3.5 RO4350B Rogers AFT20P140--4WNR3 AFT20P140--4WGNR3 4 RF Device Data Freescale Semiconductor, Inc. Gps, POWER GAIN (dB) 18.6 D VDD = 28 Vdc, Pout = 24 W (Avg.), IDQA = 500 mA VGSB = 0.6 Vdc, Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth 18.4 18.2 42 41 40 39 Gps Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 18 17.8 PARC 17.6 --30 --1.4 --32 --1.6 --34 --36 17.4 ACPR 17.2 17 1850 1875 1900 1925 1950 1975 --38 2000 2025 --40 2050 --1.8 --2 --2.2 PARC (dB) 43 18.8 ACPR (dBc) 19 D, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS --2.4 f, FREQUENCY (MHz) IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 24 Watts Avg. --20 IM3--U --30 IM3--L VDD = 28 Vdc Pout = 16 W (PEP) IDQA = 500 mA VGSB = 0.6 Vdc --40 IM5--L IM5--U --50 IM7--L --60 --70 Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 1960 MHz 1 10 IM7--U 100 300 TWO--TONE SPACING (MHz) 18.5 0 18 17.5 17 16.5 16 VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.6 mA f = 1960 MHz, Single--Carrier W--CDMA 3.84 MHz Channel Bandwidth D --1 --2 --3 50 --20 40 ACPR --2 dB = 26 W 35 --3 dB = 35 W --4 --5 10 --15 45 Gps --1 dB = 19.9 W 55 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 20 30 40 PARC 50 --25 --30 ACPR (dBc) 1 D DRAIN EFFICIENCY (%) 19 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) Figure 4. Intermodulation Distortion Products versus Two--Tone Spacing --35 30 --40 25 --45 60 Pout, OUTPUT POWER (WATTS) Figure 5. Output Peak--to--Average Ratio Compression (PARC) versus Output Power AFT20P140--4WNR3 AFT20P140--4WGNR3 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS 2025 MHz 17 20 1880 MHz 16 2025 MHz 1960 MHz Gps 15 1 10 100 10 0 200 0 --10 --20 --30 --40 ACPR (dBc) 60 VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.6 Vdc D Single--Carrier W--CDMA, 3.84 MHz Channel 20 Bandwidth, Input Signal PAR = 9.9 dB @ 50 2025 MHz 0.01% Probability on CCDF 1960 MHz 19 40 1880 MHz 1960 MHz 1880 MHz ACPR 18 30 D, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 21 --50 --60 Pout, OUTPUT POWER (WATTS) AVG. Figure 6. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 23 21 GAIN (dB) 19 VDD = 28 Vdc Pin = 0 dBm IDQA = 500 mA VGSB = 0.6 Vdc Gain 17 15 13 11 1600 1700 1800 1900 2000 2100 2200 2300 2400 f, FREQUENCY (MHz) Figure 7. Broadband Frequency Response AFT20P140--4WNR3 AFT20P140--4WGNR3 6 RF Device Data Freescale Semiconductor, Inc. VDD = 28 Vdc, IDQA = 511 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 1880 6.86 - j8.74 6.24 + j8.58 2.15 - j5.34 19.2 50.0 101 54.0 -13 1960 10.2 - j5.77 8.98 + j6.06 2.20 - j5.78 19.1 49.9 98 53.3 -14 2025 8.51 - j1.35 8.23 + j2.78 2.14 - j6.19 18.9 50.1 102 52.6 -15 Max Output Power P3dB Gain (dB) (dBm) (W) D (%) AM/PM () 2.02 - j5.66 16.9 50.8 121 55.1 -17 10.0 + j5.72 2.08 - j6.06 16.7 50.7 118 53.6 -18 8.44 + j1.79 2.08 - j6.50 16.5 50.8 121 53.0 -19 f (MHz) Zsource () Zin () 1880 6.86 - j8.74 6.77 + j9.00 1960 10.2 - j5.77 2025 8.51 - j1.35 Zload () (2) (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 8. Single Side Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, IDQA = 511 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () 1880 6.86 - j8.74 6.66 + j8.74 1960 10.2 - j5.77 9.17 + j5.67 2025 8.51 - j1.35 7.90 + j2.75 Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 4.65 - j4.23 21.6 48.4 69 64.6 -21 4.26 - j3.66 21.6 48.0 63 64.1 -22 3.73 - j4.44 21.2 48.5 70 62.7 -21 Max Drain Efficiency P3dB f (MHz) Zsource () Zin () Zload (2) () 1880 6.86 - j8.74 7.01 + j9.10 4.65 - j4.32 19.5 49.0 79 65.6 -27 1960 10.2 - j5.77 9.95 + j5.36 4.09 - j3.61 19.6 48.6 73 65.0 -30 2025 8.51 - j1.35 8.11 + j2.05 3.50 - j4.62 19.0 49.3 86 63.7 -28 Gain (dB) (dBm) (W) D (%) AM/PM () (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 9. Single Side Load Pull Performance — Maximum Drain Efficiency Tuning Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload AFT20P140--4WNR3 AFT20P140--4WGNR3 RF Device Data Freescale Semiconductor, Inc. 7 P1dB -- TYPICAL LOAD PULL CONTOURS — 1960 MHz --2 --3 46.5 E --4 49 49.5 --5 48.5 48 47.5 47 P --6 --7 --8 50 --3 IMAGINARY () IMAGINARY () --2 46 48 --4 54 56 52 62 64 58 60 E --5 P --6 --7 2 1 3 4 6 5 --8 7 1 2 3 4 6 5 7 REAL () REAL () Figure 10. P1dB Load Pull Output Power Contours (dBm) Figure 11. P1dB Load Pull Efficiency Contours (%) --2 --2 --3 --3 22 E --4 IMAGINARY () IMAGINARY () --30 21.5 --5 P --6 18 --8 1 19.5 18.5 19 --7 2 21 20.5 3 --28 --24 --26 --22 E --4 --20 --5 --18 P --6 20 --16 --14 --7 4 6 5 7 --8 1 2 3 4 5 6 REAL () REAL () Figure 12. P1dB Load Pull Gain Contours (dB) Figure 13. P1dB Load Pull AM/PM Contours () NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 7 Gain Drain Efficiency Linearity Output Power AFT20P140--4WNR3 AFT20P140--4WGNR3 8 RF Device Data Freescale Semiconductor, Inc. P3dB -- TYPICAL LOAD PULL CONTOURS — 1960 MHz --2 --2 47 --3 47.5 E --4 49.5 --5 48.5 48 50 50.5 --6 49 IMAGINARY () IMAGINARY () --3 P --7 --8 E --4 64 --5 --6 48 --7 1 2 3 4 6 5 --8 7 62 P 50 52 1 60 58 2 54 3 56 4 6 5 7 REAL () Figure 14. P3dB Load Pull Output Power Contours (dBm) Figure 15. P3dB Load Pull Efficiency Contours (%) --2 --2 --3 --3 20 E --4 IMAGINARY () IMAGINARY () REAL () 19.5 --5 19 --6 P 18 --7 --8 16 1 18.5 16.5 2 17 4 5 6 7 --32 --30 E --4 --28 --26 --5 --24 --22 --6 P --8 --20 --18 --7 17.5 3 --34 1 2 3 4 5 6 REAL () REAL () Figure 16. P3dB Load Pull Gain Contours (dB) Figure 17. P3dB Load Pull AM/PM Contours () NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 7 Gain Drain Efficiency Linearity Output Power AFT20P140--4WNR3 AFT20P140--4WGNR3 RF Device Data Freescale Semiconductor, Inc. 9 PACKAGE DIMENSIONS AFT20P140--4WNR3 AFT20P140--4WGNR3 10 RF Device Data Freescale Semiconductor, Inc. AFT20P140--4WNR3 AFT20P140--4WGNR3 RF Device Data Freescale Semiconductor, Inc. 11 AFT20P140--4WNR3 AFT20P140--4WGNR3 12 RF Device Data Freescale Semiconductor, Inc. AFT20P140--4WNR3 AFT20P140--4WGNR3 RF Device Data Freescale Semiconductor, Inc. 13 AFT20P140--4WNR3 AFT20P140--4WGNR3 14 RF Device Data Freescale Semiconductor, Inc. AFT20P140--4WNR3 AFT20P140--4WGNR3 RF Device Data Freescale Semiconductor, Inc. 15 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following documents, software and tools to aid your design process. Application Notes AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices Software Electromigration MTTF Calculator RF High Power Model .s2p File Development Tools Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Apr. 2013 Initial Release of Data Sheet 1 Jan. 2014 Added part number AFT20P140--4WGNR3, p. 1 Added OM780G--4L isometric, p. 1, and Mechanical Outline, pp. 13--15 AFT20P140--4WNR3 AFT20P140--4WGNR3 16 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2013--2014 Freescale Semiconductor, Inc. AFT20P140--4WNR3 AFT20P140--4WGNR3 Document Number: RF Device DataAFT20P140--4WN Rev. 1, 1/2014Semiconductor, Inc. Freescale 17