Freescale Semiconductor Technical Data Document Number: AFT21S140W02S Rev. 0, 2/2014 RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These 32 W RF power LDMOS transistors are designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 2110 to 2170 MHz. Typical Single--Carrier W--CDMA Performance: VDD = 28 Vdc, IDQ = 800 mA, Pout = 32 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) D (%) Output PAR (dB) ACPR (dBc) IRL (dB) 2110 MHz 19.0 33.9 6.7 --32.4 --15 2140 MHz 19.3 33.5 6.7 --32.6 --24 2170 MHz 19.4 33.2 6.7 --32.7 --22 Features Designed for Wide Instantaneous Bandwidth Applications Greater Negative Gate--Source Voltage Range for Improved Class C Operation Able to Withstand Extremely High Output VSWR and Broadband Operating Conditions Optimized for Doherty Applications In Tape and Reel. R3 Suffix = 250 Units, 56 mm Tape Width, 13--inch Reel. AFT21S140W02SR3 AFT21S140W02GSR3 2110–2170 MHz, 32 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTORS NI--780S--2L AFT21S140W02SR3 NI--780GS--2L AFT21S140W02GSR3 1 RFout/VDS RFin/VGS 2 (Top View) Figure 1. Pin Connections Freescale Semiconductor, Inc., 2014. All rights reserved. RF Device Data Freescale Semiconductor, Inc. AFT21S140W02SR3 AFT21S140W02GSR3 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +65 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg --65 to +150 C Case Operating Temperature Range TC --40 to +125 C Operating Junction Temperature Range (1,2) TJ --40 to +225 C CW 124 0.70 W W/C Symbol Value (2,3) Unit RJC 0.59 C/W CW Operation @ TC = 25C Derate above 25C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80C, 32 W CW, 28 Vdc, IDQ = 800 mA, 2140 MHz Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 Machine Model (per EIA/JESD22--A115) B Charge Device Model (per JESD22--C101) IV Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 5 Adc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 Adc Gate Threshold Voltage (VDS = 10 Vdc, ID = 146 Adc) VGS(th) 0.8 1.2 1.6 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, ID = 800 mAdc, Measured in Functional Test) VGS(Q) 1.5 1.9 2.3 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.4 Adc) VDS(on) 0.1 0.15 0.3 Vdc Characteristic Off Characteristics On Characteristics Functional Tests (4,5) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 800 mA, Pout = 32 W Avg., f = 2140 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. Power Gain Drain Efficiency Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss Gps 18.7 19.3 21.7 dB D 32.0 33.5 — % PAR 6.2 6.7 — dB ACPR — --32.6 --30.5 dBc IRL — --24 --9 dB 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. 4. Part internally matched both on input and output. 5. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GS) parts. (continued) AFT21S140W02SR3 AFT21S140W02GSR3 2 RF Device Data Freescale Semiconductor, Inc. Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQ = 800 mA, f = 2140 MHz VSWR 10:1 at 32 Vdc, 158 W CW(1) Output Power (3 dB Input Overdrive from 112 W CW Rated Power) No Device Degradation Typical Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 800 mA, 2110–2170 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 112 — W — --17 — VBWres — 150 — MHz Gain Flatness in 60 MHz Bandwidth @ Pout = 32 W Avg. GF — 0.3 — dB Gain Variation over Temperature (--30C to +85C) G — 0.03 — dB/C P1dB — 0.01 — dB/C AM/PM (Maximum value measured at the P3dB compression point across the 2110--2170 MHz bandwidth) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Output Power Variation over Temperature (--30C to +85C) (1) 1. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table. AFT21S140W02SR3 AFT21S140W02GSR3 RF Device Data Freescale Semiconductor, Inc. 3 C10 C7 VGG C12* R1 C4* C16 C3* C5* R2 CUT OUT AREA C2* C18* C17 C13* C8 VGG C19 C11 C6 C1* VDD C15 C9 VDD C14 C20 AFT21S140W02GS Rev. 3 D57393 *C1, C2, C3, C4, C5, C12, C13 and C18 are mounted vertically. Figure 2. AFT21S140W02SR3 Test Circuit Component Layout Table 5. AFT21S140W02SR3 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C4, C5, C18 6.2 pF Chip Capacitors ATC100B6R2BT500XT ATC C2 0.5 pF Chip Capacitor ATC100B0R5BT500XT ATC C3 1.1 pF Chip Capacitor ATC100B1R1BT500XT ATC C6, C7, C8, C9, C10, C11, C14, C15 10 F, Chip Capacitors GRM32ER61H106KA12L Murata C12, C13 8.2 pF Chip Capacitors ATC100B8R2CT500XT ATC C16 2.2 pF Chip Capacitor ATC100B2R2JT500XT ATC C17 0.9 pF Chip Capacitor ATC100B0R9BT500XT ATC C19, C20 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp R1, R2 2.37 , 1/4 W Chip Resistors CRCW12062R37FNEA Vishay PCB Rogers RO4350B, 0.020, r = 3.66 D57393 MTL AFT21S140W02SR3 AFT21S140W02GSR3 4 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS 19.2 32 30 Gps --32 --5 18.8 --32.5 --10 18.6 --33 19 PARC ACPR 18.4 --33.5 IRL 18.2 18 2060 2080 2100 2120 --34 2140 2160 2180 --15 --20 --25 --34.5 2220 2200 --30 --3.05 --3.1 --3.15 --3.2 PARC (dB) Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF ACPR (dBc) Gps, POWER GAIN (dB) 19.6 19.4 D, DRAIN EFFICIENCY (%) 38 VDD = 28 Vdc, Pout = 32 W (Avg.), IDQ = 800 mA Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth 36 34 D 19.8 IRL, INPUT RETURN LOSS (dB) 20 --3.25 --3.3 f, FREQUENCY (MHz) IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 32 Watts Avg. 0 VDD = 28 Vdc, Pout = 96 W (PEP) IDQ = 800 mA, Two--Tone Measurements --15 (f1 + f2)/2 = Center Frequency of 2140 MHz IM3--U --30 IM5--U --45 IM7--L IM3--L IM5--L IM7--U --60 --75 1 10 300 100 TWO--TONE SPACING (MHz) 19.4 0 19.2 19 18.8 18.6 18.4 VDD = 28 Vdc, IDQ = 800 mA, f = 2140 MHz Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth D --1 --2 dB = 23 W --1 dB = 16 W --2 ACPR --4 --3 dB = 31 W Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF --5 8 16 0 50 --10 40 30 Gps --3 60 24 32 PARC 20 --20 --30 ACPR (dBc) 1 D DRAIN EFFICIENCY (%) 19.6 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) Figure 4. Intermodulation Distortion Products versus Two--Tone Spacing --40 10 --50 0 --60 48 40 Pout, OUTPUT POWER (WATTS) Figure 5. Output Peak--to--Average Ratio Compression (PARC) versus Output Power AFT21S140W02SR3 AFT21S140W02GSR3 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS ACPR 20 15 2110 MHz 2140 MHz --10 50 --20 40 2170 MHz 2170 MHz 60 30 2140 MHz 2110 MHz 10 20 2170 MHz 5 10 Gps D 0 1 10 100 0 200 --30 --40 --50 ACPR (dBc) VDD = 28 Vdc, IDQ = 800 mA Single--Carrier W--CDMA, 3.84 MHz Channel 25 Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF D, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 30 --60 --70 Pout, OUTPUT POWER (WATTS) AVG. Figure 6. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 30 20 10 25 20 0 IRL 15 --10 --20 10 VDD = 28 Vdc Pin = 0 dBm IDQ = 800 mA 5 0 1800 IRL (dB) GAIN (dB) Gain 1920 2040 2160 2280 2400 2520 2640 --30 --40 2760 f, FREQUENCY (MHz) Figure 7. Broadband Frequency Response AFT21S140W02SR3 AFT21S140W02GSR3 6 RF Device Data Freescale Semiconductor, Inc. Table 6. Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, IDQ = 770 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 2110 4.72 - j7.83 5.44 + j8.03 3.92 - j6.59 18.9 51.8 152 54.3 -10 2140 6.03 - j8.06 6.63 + j8.08 3.84 - j6.22 19.0 51.9 156 55.5 -11 2170 7.23 - j7.37 7.86 + j7.65 3.89 - j6.16 19.2 52.0 158 56.6 -11 Max Output Power P3dB f (MHz) Zsource () Zin () Zload () (2) Gain (dB) (dBm) (W) D (%) AM/PM () 2110 4.72 - j7.83 5.92 + j8.68 3.92 - j7.04 16.8 52.8 190 57.5 -16 2140 6.03 - j8.06 7.42 + j8.66 3.99 - j6.82 16.9 52.8 193 58.4 -17 2170 7.23 - j7.37 8.93 + j7.96 3.96 - j6.86 16.9 52.9 193 58.1 -17 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 7. Load Pull Performance — Maximum Drain Efficiency Tuning VDD = 28 Vdc, IDQ = 770 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 2110 4.72 - j7.83 5.45 + j8.49 8.22 - j1.63 21.7 49.5 89 64.0 -18 2140 6.03 - j8.06 6.72 + j8.52 6.98 - j1.62 21.7 49.7 93 64.4 -18 2170 7.23 - j7.37 8.07 + j8.09 5.87 - j1.79 21.7 50.0 99 65.8 -19 Max Drain Efficiency P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 2110 4.72 - j7.83 5.83 + j8.94 6.85 - j4.39 18.9 51.6 143 66.0 -22 2140 6.03 - j8.06 7.35 + j8.95 6.31 - j4.25 18.8 51.7 148 66.5 -23 2170 7.23 - j7.37 9.04 + j8.28 6.47 - j2.38 19.6 50.9 122 67.0 -27 (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload AFT21S140W02SR3 AFT21S140W02GSR3 RF Device Data Freescale Semiconductor, Inc. 7 P1dB -- TYPICAL LOAD PULL CONTOURS — 2140 MHz 0 0 48.5 --1 48 --2 E --1 49.5 50 --3 50.5 --4 51 --5 51.5 --6 P --4 --5 --8 --8 --9 --9 4 5 6 7 8 9 62 --6 --7 3 64 --3 --7 2 E --2 IMAGINARY () IMAGINARY () 49 10 P 60 58 54 48 50 52 3 2 4 56 5 6 7 8 9 10 REAL () REAL () Figure 8. P1dB Load Pull Output Power Contours (dBm) Figure 9. P1dB Load Pull Efficiency Contours (%) 0 0 22 E --3 21 --4 20.5 --5 20 --6 P --7 19.5 18.5 --8 3 4 --20 E --18 --3 --16 --4 --14 --5 --12 --6 P --7 19 --8 18 2 --22 --2 21.5 IMAGINARY () IMAGINARY () --2 --9 --24 --1 --1 5 6 7 8 9 10 --9 2 3 4 5 6 7 8 9 REAL () REAL () Figure 10. P1dB Load Pull Gain Contours (dB) Figure 11. P1dB Load Pull AM/PM Contours () NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 10 Gain Drain Efficiency Linearity Output Power AFT21S140W02SR3 AFT21S140W02GSR3 8 RF Device Data Freescale Semiconductor, Inc. P3dB -- TYPICAL LOAD PULL CONTOURS — 2140 MHz 0 --1 --1 50 --2 --2 50.5 --3 IMAGINARY () IMAGINARY () 0 49.5 49.5 49 51 --4 E --5 51.5 52 --6 52.5 P --7 --3 --4 --5 --9 --9 4 5 6 7 8 9 10 62 P --7 --8 3 64 --6 --8 2 E 66 50 60 52 2 3 54 56 4 58 5 6 7 8 9 10 REAL () REAL () Figure 12. P3dB Load Pull Output Power Contours (dBm) Figure 13. P3dB Load Pull Efficiency Contours (%) 0 --1 E 18.5 --5 IMAGINARY () IMAGINARY () --4 18 --6 P --7 16 2 3 5 --26 --3 --24 --4 E 6 7 8 9 10 --22 --5 --20 --6 --9 --18 P --8 16.5 4 --28 --7 17.5 17 --8 --30 --2 19 --3 --32 --1 19.5 --2 --9 0 20 --16 2 4 3 5 6 7 8 9 REAL () REAL () Figure 14. P3dB Load Pull Gain Contours (dB) Figure 15. P3dB Load Pull AM/PM Contours () NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 10 Gain Drain Efficiency Linearity Output Power AFT21S140W02SR3 AFT21S140W02GSR3 RF Device Data Freescale Semiconductor, Inc. 9 PACKAGE DIMENSIONS AFT21S140W02SR3 AFT21S140W02GSR3 10 RF Device Data Freescale Semiconductor, Inc. AFT21S140W02SR3 AFT21S140W02GSR3 RF Device Data Freescale Semiconductor, Inc. 11 AFT21S140W02SR3 AFT21S140W02GSR3 12 RF Device Data Freescale Semiconductor, Inc. AFT21S140W02SR3 AFT21S140W02GSR3 RF Device Data Freescale Semiconductor, Inc. 13 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following documents, software and tools to aid your design process. Application Notes AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices Software Electromigration MTTF Calculator RF High Power Model .s2p File Development Tools Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Feb. 2014 Description Initial Release of Data Sheet AFT21S140W02SR3 AFT21S140W02GSR3 14 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2014 Freescale Semiconductor, Inc. AFT21S140W02SR3 AFT21S140W02GSR3 Document Number: RF Device DataAFT21S140W02S Rev. 0, 2/2014Semiconductor, Inc. Freescale 15