APT46GA90JD40 900V High Speed PT IGBT E E POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved 7 22 C G through leading technology silicon design and lifetime control processes. A reduced Eoff TO S VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short "UL Recognized" ISOTOP ® delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the APT46GA90JD40 poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even when switching at high frequency. Combi (IGBT and Diode) ® file # E145592 FEATURES TYPICAL APPLICATIONS • Fast switching with low EMI • ZVS phase shifted and other full bridge • Very Low Eoff for maximum efficiency • Half bridge • Ultra low Cres for improved noise immunity • High power PFC boost • Low conduction loss • Welding • Low gate charge • UPS, solar, and other inverters • Increased intrinsic gate resistance for low EMI • High frequency, high efficiency industrial • RoHS compliant Absolute Maximum Ratings Ratings Unit Collector Emitter Voltage 900 V IC1 Continuous Collector Current @ TC = 25°C 87 IC2 Continuous Collector Current @ TC = 100°C 46 ICM Pulsed Collector Current 1 136 VGE Gate-Emitter Voltage ±30 V PD Total Power Dissipation @ TC = 25°C 284 W Vces Parameter 2 SSOA Switching Safe Operating Area @ TJ = 150°C TJ, TSTG Operating and Storage Junction Temperature Range Static Characteristics Symbol A 136A @ 900V °C -55 to 150 TJ = 25°C unless otherwise specified Parameter Test Conditions Min VBR(CES) Collector-Emitter Breakdown Voltage VGE = 0V, IC = 1.0mA 900 VCE(on) Collector-Emitter On Voltage VGE(th) Gate Emitter Threshold Voltage Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Max 3.1 VGE = 15V, TJ = 25°C 2.5 IC = 47A TJ = 125°C 2.2 VGE =VCE , IC = 1mA ICES Typ 3 4.5 TJ = 25°C 350 VGE = 0V TJ = 125°C 1500 Microsemi Website - http://www.microsemi.com V 6 VCE = 900V, VGS = ±30V Unit ±100 μA nA 052-6346 Rev C 6- 2009 Symbol Dynamic Characteristics Symbol Parameter Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Qg3 Total Gate Charge Qge Gate-Emitter Charge Qgc SSOA td(on) tr td(off) tf APT46GA90JD40 TJ = 25°C unless otherwise specified Gate- Collector Charge Switching Safe Operating Area Turn-On Delay Time Test Conditions Min Typ Capacitance 4170 VGE = 0V, VCE = 25V 438 f = 1MHz 63 Gate Charge 698 VGE = 15V 380 VCE= 450V IC = 47A TJ = 150°C, RG = 4.7Ω4, VGE = 15V, Inductive Switching (25°C) 18 VCC = 600V 26 Turn-Off Delay Time VGE = 15V 153 IC = 47A 45 RG = 4.7Ω4 1726 Eoff6 Turn-Off Switching Energy TJ = +25°C 1222 td(on) Turn-On Delay Time Inductive Switching (125°C) 17 Current Rise Time VCC = 600V 27 Turn-Off Delay Time VGE = 15V 199 IC = 47A 166 Eon2 Turn-On Switching Energy RG = 4.7Ω4 3232 Eoff6 Turn-Off Switching Energy TJ = +125°C 2471 tf Current Fall Time nC A Turn-On Switching Energy tr pF 136 L= 100uH, VCE = 900V Eon2 td(off) Unit 50 Current Rise Time Current Fall Time Max ns μJ ns μJ Thermal and Mechanical Characteristics Symbol Characteristic RθJC Junction to Case Thermal Resistance (IGBT) RθJC Junction to Case Thermal Resistance (Diode) WT Package Weight VIsolation RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) Min Typ Max - - .44 .61 2500 29.2 - Unit °C/W g Volts 052-6346 Rev C 6 - 2009 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. 2 Pulse test: Pulse Width < 380μs, duty cycle < 2%. 3 See Mil-Std-750 Method 3471. 4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) 5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode. 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves APT46GA90JD40 350 150 V = 15V 15V TJ= 25°C 300 125 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) GE TJ= 55°C TJ= 125°C 100 TJ= 150°C 75 50 25 13V 10V 9V 250 200 8V 150 7V 100 6V 50 5V 0 1 2 3 4 5 6 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250μs PULSE TEST<0.5 % DUTY CYCLE IC, COLLECTOR CURRENT (A) 125 100 75 50 TJ= 25°C 25 TJ= -55°C TJ= 125°C VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE IC = 94A IC = 47A IC = 23.5A 2 1 0 2 4 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 4 2 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature 0 1 2 3 4 5 6 GATE CHARGE (nC) FIGURE 4, Gate charge 7 6 5 4 IC = 94A 3 IC = 47A 2 IC = 23.5A 1 0 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature IC, DC COLLECTOR CURRENT (A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 0.85 VCE = 720V 6 70 0.90 VCE = 450V 8 1.10 0.95 VCE = 180V 10 80 1.00 J 12 1.15 1.05 I = 47A C T = 25°C 14 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4 3 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 60 50 40 30 20 10 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6346 Rev C 6- 2009 150 0 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 Typical Performance Curves APT46GA90JD40 300 VCE = 600V TJ = 25°C, or 125°C RG = 4.7Ω L = 100μH 40 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 50 30 20 10 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current RG = 4.7Ω, L = 100μH, VCE = 600V 100 VGE =15V,TJ=25°C VCE = 600V RG = 4.7Ω L = 100μH 50 TJ = 125°C, VGE = 15V tr, FALL TIME (ns) tr, RISE TIME (ns) 150 160 60 40 TJ = 25 or 125°C,VGE = 15V 20 0 0 20 40 60 80 Eon2, TURN ON ENERGY LOSS (μJ) G 5000 TJ = 125°C 4000 3000 2000 TJ = 25°C 1000 0 RG = 4.7Ω, L = 100μH, VCE = 600V 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 5000 V = 600V CE V = +15V GE R = 4.7Ω G 4000 TJ = 125°C 3000 2000 1000 TJ = 25°C 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current 7000 V = 600V CE V = +15V GE T = 125°C 10000 Eon2,94A J 8000 Eoff,94A 6000 Eon2,47A 4000 Eoff,47A 2000 Eon2,23.5A Eoff,23.5A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance SWITCHING ENERGY LOSSES (μJ) 12000 0 TJ = 25°C, VGE = 15V 6000 V = 600V CE V = +15V GE R =4.7Ω 6000 80 0 100 EOFF, TURN OFF ENERGY LOSS (μJ) 7000 120 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current SWITCHING ENERGY LOSSES (μJ) VGE =15V,TJ=125°C 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 200 80 052-6346 Rev C 6 - 2009 200 0 0 100 250 V = 600V CE V = +15V GE R = 4.7Ω 6000 Eon294A G Eoff,94A 5000 4000 3000 Eon2,47A 2000 Eoff,47A Eon2,23.5A 1000 0 Eoff,23.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT46GA90JD40 10,000 1000 1,000 Coes 100 Cres 10 0 100 200 300 400 500 600 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) Cies 100 10 1 0.1 1 10 100 1000 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0.45 D = 0.9 0.40 0.35 0.7 0.30 0.25 0.5 Note: 0.20 PDM 0.3 0.15 t1 t2 0.10 t 0.1 0.05 0.05 0 10-5 SINGLE PULSE 10-4 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-2 10-3 0.1 1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 052-6346 Rev C 6- 2009 ZθJC, THERMAL IMPEDANCE (°C/W) 0.50 APT46GA90JD40 10% Gate Voltage td(on) TJ = 125°C 90% APT30DQ60 tr IC V CC V CE 5% Collector Current 10% Collector Voltage 5% Switching Energy A D.U.T. Figure 20, Inductive Switching Test Circuit 90% Figure 21, Turn-on Switching Waveforms and Definitions TJ = 125°C td(off) Gate Voltage Collector Voltage tf 10% 0 Collector Current Switching Energy 052-6346 Rev C 6 - 2009 Figure 22, Turn-off Switching Waveforms and Definitions ULTRAFAST SOFT RECOVERY RECTIFIER DIODE All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Symbol Characteristic / Test Conditions IF(AV) IF(RMS) IFSM APT46GA90JD40 Maximum Average Forward Current (TC = 106°C, Duty Cycle = 0.5) 40 RMS Forward Current (Square wave, 50% duty) 60 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms) 210 Unit Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions Min IF = 40A 2.5 IF = 80A 3.08 IF = 40A, TJ = 125°C 1.97 Forward Voltage VF Type Max Unit Volts DYNAMIC CHARACTERISTICS Symbol Characteristic trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge Maximum Reverse Recovery Current IRRM trr Reverse Recovery Time Qrr Reverse Recovery Charge Maximum Reverse Recovery Current IRRM trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current Test Conditions Min Typ Max IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C - 25 - IF = 40A, diF/dt = -200A/µs VR = 667V, TC = 25°C IF = 40A, diF/dt = -200A/µs VR = 667V, TC = 125°C IF = 40A, diF/dt = -1000A/µs VR = 667V, TC = 125°C Unit ns - 250 - - 415 - nC - 4 - Amps - 315 - ns - 1650 - nC - 9 - Amps - 145 - ns - 2660 - nC - 29 - Amps 0.60 D = 0.9 0.50 0.7 0.40 0.5 Note: 0.30 PDM 0.3 0.20 0 t2 0.1 0.05 0.10 10-5 t1 t SINGLE PULSE Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION 052-6346 Rev C 6- 2009 ZθJC, THERMAL IMPEDANCE (°C/W) 0.70 Dynamic Characteristics TJ = 25°C unless otherwise specified 400 100 80 TJ = 175°C 60 TJ = 125°C 40 TJ = 25°C trr, REVERSE RECOVERY TIME (ns) IF, FORWARD CURRENT (A) 120 20 1.0 2.0 3.0 4.0 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 2. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) 4000 T = 125°C J V = 667V R 80A 3000 2500 40A 2000 1500 20A 1000 500 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 4. Reverse Recovery Charge vs. Current Rate of Change 100 35 T = 125°C J V = 667V 80A R 30 25 20 15 40A 10 20A 5 Duty cycle = 0.5 T = 175°C J 60 50 0.8 0.6 0.4 0.0 Qrr 0 160 140 120 100 80 60 40 20 0 40 30 20 10 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 6. Dynamic Parameters vs. Junction Temperature CJ, JUNCTION CAPACITANCE (pF) 150 70 IRRM 0.2 052-6346 Rev C 6 - 2009 20A 200 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 5. Reverse Recovery Current vs. Current Rate of Change trr trr 40A 250 0 Qrr 1.0 300 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 3. Reverse Recovery Time vs. Current Rate of Change IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 R 80A 0 IRRM, REVERSE RECOVERY CURRENT (A) 0 3500 T = 125°C J V = 667V 350 50 TJ = -55°C 0 APT46GA90JD40 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 8. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 7. Maximum Average Forward Current vs. CaseTemperature Dynamic Characteristics TJ = 25°C unless otherwise specified APT46GA90JD40 Vr diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30μH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 9. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 0.25 IRRM 3 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 10, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) Collector/Cathode * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode Gate Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved. 052-6346 Rev C 6- 2009 7.8 (.307) 8.2 (.322)