INFINEON BFP490

SIEGET 25
BFP 490
NPN Silicon RF Transistor
Preliminary data
4
• For high power amplifiers
5
• Compression point P-1dB = 26.5 dBm at 1.8 GHz
maxim. available Gain Gma = 9.5 dB at 1.8 GHz
• Transition frequency fT > 17 GHz
3
2
• Gold metalization for high reliability
• SIEGET  25 - Line
1
VPW05980
Siemens Grounded Emitter Transistor
25 GHz fT - Line
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type
Marking Ordering Code
Pin Configuration
BFP 490
AOs
1=B
Q62702-F1721
2=E
3=C
Package
4=C
5=E
SCT-595
Maximum Ratings
Parameter
Symbol
Value
Collector-emitter voltage
VCEO
4.5
Collector-base voltage
VCBO
15
Emitter-base voltage
VEBO
1.5
Collector current
IC
600
Base current
IB
60
Total power dissipation, T S ≤ 85 °C
Ptot
Junction temperature
Tj
150
Ambient temperature
TA
-65 ...+150
Storage temperature
Tstg
-65 ...+150
1000
Unit
V
mA
mW
°C
Thermal Resistance
Junction - soldering point
1)
RthJS
≤ 65
K/W
1) TS is measured on the emitter lead at the soldering point
mounted on alumina 15 mm x 16,7 mm x 0.7 mm
Semiconductor Group
Semiconductor Group
11
Sep-09-1998
1998-11-01
BFP 490
Electrical Characteristics at TA = 25°C, unless otherwise specified.
Parameter
Symbol
Values
Unit
min.
typ.
max.
4.5
5
-
V
I CBO
-
-
1800
nA
I EBO
-
-
400
µA
hFE
50
90
-
DC characteristics
Collector-emitter breakdown voltage
I C = 1 mA, I B = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 1.5 V, I C = 0
DC current gain
I C = 200 mA, V CE = 3 V
V(BR)CEO
AC characteristics
Transition frequency
IC = 300 mA, VCE = 3 V, f = 0.2 GHz
IC = 300 mA, VCE = 3 V, f = 0.5 GHz
Collector-base capacitance
VCB = 2 V, f = 1 MHz
Collector-emitter capacitance
VCE = 2 V, f = 1 MHz
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz
Noise figure
IC = 100 mA, VCE = 2 V, ZS = ZSopt ,
f = 1.8 GHz
Power gain 2)
IC = 200 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt ,
f = 1.8 GHz
Insertion power gain
IC = 200 mA, VCE = 2 V, f = 0.5 GHz,
ZS = ZL = 50Ω
Third order intersept point
IC = 300 mA, VCE = 3 V, ZS=ZSopt , ZL=ZLopt ,
f = 1.8 GHz
1dB Compression point
IC = 300 mA, VCE = 3 V, f = 1.8 GHz,
ZS=ZSopt , ZL=ZLopt
-
GHz
fT
Ccb
13
-
17.5
15
3.7
4.7
Cce
-
6.3
-
Ceb
-
10.5
-
F
-
3.3
-
dB
Gma
-
9
-
dB
|S21|2
-
8.5
-
IP3
-
35
-
P-1dB
-
26.5
-
pF
dBm
2) Gma = |S21 / S12| (k-(k2-1)1/2)
Semiconductor Group
Semiconductor Group
22
Sep-09-1998
1998-11-01
BFP 490
Common Emitter S-Parameters
f
GHz
S11
MAG
ANG
S21
S12
S22
MAG
ANG
MAG
ANG
MAG
ANG
75.95
12.96
4.28
2.52
1.36
1.22
0.8
0.61
0.43
144.1
94.9
83.7
77.3
68.1
65.7
55.6
47.1
29.1
0.0053
0.0095
0.0133
0.0188
0.0295
0.0321
0.045
0.0574
0.0811
53.8
25.5
43.6
51.9
56.1
55.7
52.7
48.1
36.6
0.7723
0.8743
0.8761
0.8777
0.8825
0.9944
0.8861
0.8878
0.884
-77.6
-167.1
-179.6
175.7
169.5
168.2
162.5
157.7
146.7
63.82
14.24
4.735
2.788
1.515
1.358
0.891
0.672
0.47
153.8
98.6
85.3
78.7
69.8
67.5
57.7
49.4
31.7
0.003
0.007
0.0119
0.0179
0.0294
0.0324
0.0454
0.0581
0.0819
38.4
34.6
53.6
59.4
60.8
59.8
55.5
50.3
37.9
0.4321
0.8696
0.8834
0.8879
0.892
0.8952
0.8953
0.8968
0.8928
-91.1
-167
-179.5
175.8
169.5
168.1
162.2
157.5
146.5
V CE = 2V, IC = 150mA
0.01
0.1
0.3
0.5
0.9
1
1.5
2
3
0.648
0.916
0.921
0.92
0.921
0.919
0.928
0.926
0.924
-159.8
-178.5
173.7
168.2
159.1
157
147.1
138.8
122.8
V CE = 2V, IC = 300mA
0.01
0.1
0.3
0.5
0.9
1
1.5
2
3
0.7274
0.9158
0.9215
0.9193
0.9224
0.9201
0.9373
0.9265
0.9204
-172.3
-179.6
173.1
167.9
158.9
156.7
147
138.6
122.7
For more and detailed S- parameters please contact your local Siemens
distributor or sales office to obtain a Siemens Application Notes CD-ROM or see Internet:
http://www.siemens.de/Semiconductor/products/35/35.htm
Semiconductor Group
Semiconductor Group
33
Sep-09-1998
1998-11-01
BFP 490
SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) :
Transistor Chip Data
IS =
0.451
fA
BF =
114.96
-
NF =
1.1472
-
VAF =
24.665
V
IKF =
0.76939
A
ISE =
1.1591
pA
NE =
1.9962
-
BR =
21.04
-
NR =
1.3531
-
VAR =
16.035
V
IKR =
0.090033
A
ISC =
3.7479
A
NC =
1.339
-
RB =
1.0754
Ω
IRB =
0.17683
mA
RBM =
2.1262
Ω
RE =
0.32476
RC =
0.10737
Ω
CJE =
1.227
fF
VJE =
0.93266
V
MJE =
0.36885
-
TF =
3.9147
ps
XTF =
0.61664
-
VTF =
0.27348
V
ITF =
3.2793
mA
PTF =
0
deg
CJC =
6.12521
fF
VJC =
0.9832
V
MJC =
0.34153
-
XCJC =
0.3
-
TR =
1.115
ns
CJS =
0
F
VJS =
0
V
MJS =
0
-
XTB =
0
-
EG =
1.11
eV
XTI =
0
-
FC =
0.75835
-
TNOM
300
K
-
RS =
tbd
Ω
L BI =
0.85
nH
L BO =
0.3
nH
L EI =
0.15
nH
L EO =
0.04
nH
L CI =
0.39
nH
L CO =
0.2
nH
C BE =
150
fF
C CB =
2.2
fF
C CE =
500
fF
C’-E’-Diode Data (Berkley-SPICE 2G.6 Syntax) :
IS =
tbd
fA
N=
tbd
All parameters are ready to use, no scalling is necessary
Package Equivalent Circuit:
C CB
L BO
L BI
B
B’
Transistor
Chip
E’
C BE
C’
L CI
L CO
C
C’-E’Diode
C CE
L EI
L EO
E
EHA07389
Valid up to 3GHz
The SOT-595 package has two emitter leads. To avoid high complexity of the package equivalent circuit,
both leads are combined in one electrical connection.
Extracted on behalf of SIEMENS Small Signal Semiconductors by:
Institut für Mobil-und Satellitentechnik (IMST)
 1996 SIEMENS AG
For examples and ready to use parameters please contact your local Siemens distributor or sales office to
obtain a Siemens CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/35.htm
Semiconductor Group
Semiconductor Group
44
Sep-09-1998
1998-11-01
BFP 490
For non-linear simulation:
• Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
• If you need simulation of thereverse characteristics, add the diode with the
C’-E’- diode data between collector and emitter.
• Simulation of package is not necessary for frequenties < 100MHz.
For higher frequencies add the wiring of package equivalent circuit around the
non-linear transistor and diode model.
Note:
• This transistor is constructed in a common emitter configuration. This feature causes
an additional reverse biased diode between emitter and collector, which does not
effect normal operation.
C
B
E
E
EHA07307
Transistor Schematic Diagram
The common emitter configuration shows the following advantages:
• Higher gain because of lower emitter inductance.
• Power is dissipated via the grounded emitter leads, because the chip is mounted
on copper emitter leadframe.
Please note, that the broadest lead is the emitter lead.
The AC characteristics are verified by random sampling.
Semiconductor Group
Semiconductor Group
55
Sep-09-1998
1998-11-01
BFP 490
Total power dissipation P tot = f (T A*, TS)
Transition frequency fT = f (IC)
* Package mounted on epoxy
f = 200 MHz
VCE = parameter in V
20
1200
mW
GHz
3
1
1000
16
0.5
TS
800
14
fT
P tot
900
700
12
10
600
TA
500
8
400
6
300
4
200
2
100
0
0
20
40
60
80
100
120 °C
0
0
150
50 100 150 200 250 300 350 400 mA
TA,TS
500
IC
Permissible Pulse Load
Permissible Pulse Load R thJS = f (tp)
Ptotmax/P totDC = f (tp)
10 2
10 2
-
RthJS
Pmax
/ PDC
K/W
10 1
10 0 -7
10
10 1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
10 0 -7
10
0
tp
Semiconductor Group
Semiconductor Group
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
tp
66
Sep-09-1998
1998-11-01
BFP 490
Power gain G ma, G ms, |S 21|2 = f (f)
VCE = 2 V, I C = 200 mA
Power gain Gma, Gms = f (I C)
VCE = 2V
f = parameter in GHz
24
48
dB
dB
20
0.5
36
18
32
G
G
28
24
20
0.8
14
1
12
Gms
16
16
10
12
1.8
2
8
8
Gma
4
2.5
6
0
4
-4
-8
-12
0
2
|S21 |2
1
2
3
4
5
GHz
0
0
7
50 100 150 200 250 300 350 400 mA
f
500
IC
Power gain G ma,Gms = f (VCE)
I C=200mA
Collector-base capacitance Ccb = f (VCB)
VBE = 0, f = 1MHz
f = parameter in GHz
10
26
dB
22
pF
0.5
20
Ccb
G
18
0.8
16
6
1
14
12
4
1.8
10
2
8
2.5
6
2
4
2
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
V
0
0.0
4.5
VCE
Semiconductor Group
Semiconductor Group
0.5
1.0
1.5
2.0
2.5
3.0
V
4.0
VCB
77
Sep-09-1998
1998-11-01
BFP 490
Noise figure F = f (IC)
VCE = 2 V, ZS = Z Sopt
6.5
dB
5.5
5.0
F
4.5
4.0
3.5
3.0
2.5
2.0
1.5
f = 0.45 GHz
f = 0.9 GHz
f = 1.8 GHz
1.0
0.5
0.0
0
50 100 150 200 250 300 350 400 mA
500
IC
Semiconductor Group
Semiconductor Group
88
Sep-09-1998
1998-11-01