SIEGET 45 BFP520 NPN Silicon RF Transistor 3 For highest gain low noise amplifier 4 at 1.8 GHz and 2 mA / 2 V Outstanding Gms = 23 dB Noise Figure F = 0.95 dB For oscillators up to 15 GHz 2 Transition frequency fT = 45 GHz 1 VPS05605 Gold metallization for high reliability SIEGET 45 - Line 45 GHz fT - Line ESD: Electrostatic discharge sensitive device, observe handling precaution! Type Marking BFP520 APs Pin Configuration 1=B 2=E 3=C Package 4=E SOT343 Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO 2.5 Collector-base voltage VCBO 10 Emitter-base voltage VEBO 1 Collector current IC 40 Base current IB 4 Total power dissipation Ptot 100 mW Junction temperature Tj 150 °C Ambient temperature TA -65 ... 150 Storage temperature Tstg -65 ... 150 Value Unit V mA TS 105 °C 1) Thermal Resistance Junction - soldering point2) RthJS 450 K/W 1T is measured on the collector lead at the soldering point to the pcb S 2For calculation of R thJA please refer to Application Note Thermal Resistance 1 Sep-26-2001 SIEGET 45 BFP520 Electrical Characteristics at TA = 25°C, unless otherwise specified. Symbol Values Parameter Unit min. typ. max. 2.5 3 3.5 V ICBO - - 200 nA IEBO - - 35 µA hFE 70 110 200 - DC characteristics Collector-emitter breakdown voltage IC = 1 mA, IB = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 1 V, IC = 0 DC current gain IC = 20 mA, VCE = 2 V V(BR)CEO AC characteristics (verified by random sampling) Transition frequency IC = 30 mA, VCE = 2 V, f = 2 GHz Collector-base capacitance VCB = 2 V, f = 1 MHz Collector-emitter capacitance VCE = 2 V, f = 1 MHz Emitter-base capacitance VEB = 0.5 V, f = 1 MHz Noise figure IC = 2 mA, VCE = 2 V, ZS = ZSopt , f = 1.8 GHz fT - 45 - GHz Ccb - 0.06 - pF Cce - 0.3 - Ceb - 0.35 - F - 0.95 - Power gain, maximum stable 1) IC = 20 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Insertion power gain IC = 20 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZL = 50 Third order intercept point at output VCE = 2 V, f = 1.8 GHz, ZS =ZSopt , ZL=ZLopt , IC = 20 mA IC = 7 mA Gms - 23 - |S21|2 - 21 - 1dB compression point VCE = 2 V, f = 1.8 GHz, ZS =ZSopt , ZL=ZLopt , IC = 20 mA IC = 7 mA P-1dB 1G ms dB dB dBm IP3 - 25 17 - - 12 5 - = |S21 / S12 | 2 Sep-26-2001 SIEGET 45 BFP520 Common Emitter S-Parameters f GHz S11 MAG S21 ANG MAG S12 ANG MAG S22 ANG MAG ANG VCE = 2 V, /C = 20 mA 0.01 0.1 0.5 1 2 3 4 5 6 -0.7 -8.4 -40.7 -73.6 -123.8 -166.1 156.2 133.6 118.7 0.7244 0.7251 0.6368 0.4768 0.2816 0.2251 0.2552 0.3207 0.3675 32.273 31.637 27.293 19.601 11.021 7.481 5.636 4.488 3.683 178.6 171.4 140.7 113.5 84.9 67.6 53.1 39.7 27.5 0.0007 0.0041 0.0194 0.0351 0.0057 0.0788 0.0994 0.1177 0.1343 69.4 92.8 75.9 66.5 56.3 49.2 41.5 32.9 24.7 0.9052 0.9363 0.8523 0.6496 0.3818 0.2407 0.1544 0.0951 0.0545 1.2 -4.4 -26.7 -46.1 -64.6 -73.6 -95.3 -128.9 177.6 Common Emitter Noise Parameters f Fmin 1) Ga 1) Γopt GHz dB dB MAG RN ANG rn F502) |S21|2 2) - dB dB VCE = 2 V, IC = 2 mA 0.9 1.8 2.4 3 4 5 6 0.72 0.95 1.07 1.31 1.35 1.71 1.95 21.5 20.1 16.1 14.5 11.6 9.5 8.1 0.64 0.49 0.45 0.41 0.26 0.14 0.12 14 30 41 54 82 128 151 21.5 19.1 18.1 16.5 12.5 9.1 8.1 0.43 0.38 0.36 0.33 0.25 0.18 0.16 1.75 1.55 1.61 1.71 1.61 1.85 1.95 16.11 15.14 14.07 13.13 11.49 9.87 8.28 22.1 20.5 18.1 16.2 13.5 11.5 10.5 0.49 0.38 0.34 0.29 0.16 0.08 0.07 12 22 33 45 71 120 150 16.1 14.1 14.1 13.5 11.1 10.1 8.1 0.32 0.28 0.28 0.27 0.22 0.21 0.16 1.51 1.38 1.41 1.51 1.45 1.65 1.81 21.94 19.34 17.54 16.01 13.82 11.93 10.23 VCE = 2 V, IC = 5 mA 0.9 1.8 2.4 3 4 5 6 0.89 1.08 1.12 1.32 1.35 1.61 1.81 1) Input matched for minimum noise figure, output for maximum gain 2) ZS = ZL = 50 For more and detailed S- and Noise-parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies Application Notes CD-ROM or see Internet: http://www.infineon.com/silicondiscretes 3 Sep-26-2001 SIEGET 45 BFP520 SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) : Transistor Chip Data IS = 15 aA BF = 235 - NF = 1 - VAF = 25 V IKF = 0.4 A ISE = 25 fA NE = 2 - BR = 1.5 - NR = 1 - VAR = 2 V IKR = 0.01 A ISC = 20 fA NC = 2 - RB = 11 IRB = - A RBM = 7.5 RE = 0.6 RC = 7.6 CJE = 235 fF VJE = 0.958 V MJE = 0.335 - TF = 1.7 ps XTF = 10 - VTF = 5 V ITF = 0.7 A PTF = 50 deg CJC = 93 fF VJC = 0.661 V MJC = 0.236 - XCJC = 1 - TR = 50 ns CJS = 0 fF VJS = 0.75 V MJS = 0.333 - XTB = -0.25 - EG = 1.11 eV XTI = 0.035 - FC = 0.5 - TNOM 298 K LBI = 0.47 nH LBO = 0.53 nH LEI = 0.23 nH LEO = 0.05 nH LCI = 0.56 nH LCO = 0.58 nH CBE = 136 fF CCB = 6.9 fF CCE = 134 fF Package Equivalent Circuit: Valid up to 6GHz The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection. For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes 4 Sep-26-2001 SIEGET 45 BFP520 For non-linear simulation: Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators. Simulation of the package is not necessary for frequencies < 100MHz. For higher frequencies please add the wiring of the package equivalent circuit around the non-linear transistor. Advantages of the common emitter configuration: Higher gain because of lower emitter inductance. Power is dissipated via the grounded emitter leads, because the chip is mounted on the copper emitter leadframe. Please note, that the broadest lead is the emitter lead. 5 Sep-26-2001 SIEGET 45 Total power dissipation Ptot = f (TS ) BFP520 Transition frequency fT = f (IC) f = 2 GHz VCE = parameter in V 52 120 mW GHz 2 44 100 40 90 1 fT P tot 36 80 32 70 28 60 24 50 40 16 30 12 20 8 10 4 0 0 0.75 20 20 40 60 80 100 120 °C 0 0 150 0.5 5 10 15 20 25 30 35 mA TS 45 IC Permissible Pulse Load RthJS = f (tp) Permissible Pulse Load P totmax/P totDC = f (tp) 10 1 RthJS Ptotmax / PtotDC 10 3 K/W D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 - 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 2 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 10 0 -7 10 0 tp 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 tp 6 Sep-26-2001 SIEGET 45 BFP520 Power gain Gma, Gms , |S21 |2 = f ( f ) Power gain Gma, Gms = f (I C) VCE = 2V, IC = 20 mA VCE = 2V f = parameter in GHz 32 44 dB 0.9 dB 36 1.8 24 32 Gms 2.4 G G 28 20 3 24 16 4 20 5 Gma 16 6 12 |S21|2 12 8 8 4 4 0 0.0 1.0 2.0 3.0 4.0 GHz 0 0 6.0 5 10 15 20 25 30 35 mA 45 IC f Power gain Gma, Gms = f (VCE) Collector-base capacitance Ccb = f (VCB) IC = 20 mA f = 1MHz f = parameter in GHz 32 0.30 0.9 dB pF 1.8 24 Ccb G 2.4 20 3 4 16 0.20 0.15 5 6 12 0.10 8 0.05 4 0 0.0 0.5 1.0 1.5 2.0 V 0.00 0.0 3.0 VCE 0.5 1.0 1.5 2.0 V 3.0 VCB 7 Sep-26-2001 SIEGET 45 Noise figure F = f (IC ) Noise figure F = f (IC) VCE = 2 V, ZS = ZSopt VCE = 2 V, f = 1.8 GHz 3.0 BFP520 3.0 dB dB F 2.0 F 2.0 1.5 1.5 f = 6 GHz f = 5 GHz f = 4 GHz f = 3 GHz f = 2.4 GHz f = 1.8 GHz f = 0.9 GHz 1.0 0.5 0.0 0 5 10 15 20 25 30 1.0 Zs = 50Ohm Zs = Zsopt 0.5 mA 0.0 0 40 5 10 15 20 25 mA 30 IC 40 IC Noise figure F = f ( f ) Source impedance for min. VCE = 2 V, ZS = ZSopt noise figure vs. Frequency VCE = 2 V, IC = 2 mA / 5 mA 3.0 +j50 +j25 dB +j100 +j10 3GHz 2.0 4GHz 1.8GHz 0.9GHz F 5GHz 6GHz 0 1.5 10 25 50 100 0.45GHz 2mA 5mA 1.0 -j10 IC = 5 mA IC = 2 mA 0.5 -j25 -j100 -j50 0.0 0.0 1.0 2.0 3.0 4.0 5.0 GHz 6.5 f 8 Sep-26-2001