INFINEON BFP520

SIEGET 45
BFP520
NPN Silicon RF Transistor
3
For highest gain low noise amplifier
4
at 1.8 GHz and 2 mA / 2 V
Outstanding Gms = 23 dB
Noise Figure F = 0.95 dB
For oscillators up to 15 GHz
2
Transition frequency fT = 45 GHz
1
VPS05605
Gold metallization for high reliability
SIEGET 45 - Line
45 GHz fT - Line
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type
Marking
BFP520
APs
Pin Configuration
1=B
2=E
3=C
Package
4=E
SOT343
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
2.5
Collector-base voltage
VCBO
10
Emitter-base voltage
VEBO
1
Collector current
IC
40
Base current
IB
4
Total power dissipation
Ptot
100
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
Tstg
-65 ... 150
Value
Unit
V
mA
TS 105 °C 1)
Thermal Resistance
Junction - soldering point2)
RthJS
450
K/W
1T is measured on the collector lead at the soldering point to the pcb
S
2For calculation of R
thJA please refer to Application Note Thermal Resistance
1
Sep-26-2001
SIEGET 45
BFP520
Electrical Characteristics at TA = 25°C, unless otherwise specified.
Symbol
Values
Parameter
Unit
min.
typ.
max.
2.5
3
3.5
V
ICBO
-
-
200
nA
IEBO
-
-
35
µA
hFE
70
110
200
-
DC characteristics
Collector-emitter breakdown voltage
IC = 1 mA, IB = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 1 V, IC = 0
DC current gain
IC = 20 mA, VCE = 2 V
V(BR)CEO
AC characteristics (verified by random sampling)
Transition frequency
IC = 30 mA, VCE = 2 V, f = 2 GHz
Collector-base capacitance
VCB = 2 V, f = 1 MHz
Collector-emitter capacitance
VCE = 2 V, f = 1 MHz
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz
Noise figure
IC = 2 mA, VCE = 2 V, ZS = ZSopt ,
f = 1.8 GHz
fT
-
45
-
GHz
Ccb
-
0.06
-
pF
Cce
-
0.3
-
Ceb
-
0.35
-
F
-
0.95
-
Power gain, maximum stable 1)
IC = 20 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt ,
f = 1.8 GHz
Insertion power gain
IC = 20 mA, VCE = 2 V, f = 1.8 GHz,
ZS = ZL = 50
Third order intercept point at output
VCE = 2 V, f = 1.8 GHz, ZS =ZSopt , ZL=ZLopt ,
IC = 20 mA
IC = 7 mA
Gms
-
23
-
|S21|2
-
21
-
1dB compression point
VCE = 2 V, f = 1.8 GHz, ZS =ZSopt , ZL=ZLopt ,
IC = 20 mA
IC = 7 mA
P-1dB
1G
ms
dB
dB
dBm
IP3
-
25
17
-
-
12
5
-
= |S21 / S12 |
2
Sep-26-2001
SIEGET 45
BFP520
Common Emitter S-Parameters
f
GHz
S11
MAG
S21
ANG
MAG
S12
ANG
MAG
S22
ANG
MAG
ANG
VCE = 2 V, /C = 20 mA
0.01
0.1
0.5
1
2
3
4
5
6
-0.7
-8.4
-40.7
-73.6
-123.8
-166.1
156.2
133.6
118.7
0.7244
0.7251
0.6368
0.4768
0.2816
0.2251
0.2552
0.3207
0.3675
32.273
31.637
27.293
19.601
11.021
7.481
5.636
4.488
3.683
178.6
171.4
140.7
113.5
84.9
67.6
53.1
39.7
27.5
0.0007
0.0041
0.0194
0.0351
0.0057
0.0788
0.0994
0.1177
0.1343
69.4
92.8
75.9
66.5
56.3
49.2
41.5
32.9
24.7
0.9052
0.9363
0.8523
0.6496
0.3818
0.2407
0.1544
0.0951
0.0545
1.2
-4.4
-26.7
-46.1
-64.6
-73.6
-95.3
-128.9
177.6
Common Emitter Noise Parameters
f
Fmin 1)
Ga 1)
Γopt
GHz
dB
dB
MAG
RN
ANG
rn
F502)
|S21|2 2)
-
dB
dB
VCE = 2 V, IC = 2 mA
0.9
1.8
2.4
3
4
5
6
0.72
0.95
1.07
1.31
1.35
1.71
1.95
21.5
20.1
16.1
14.5
11.6
9.5
8.1
0.64
0.49
0.45
0.41
0.26
0.14
0.12
14
30
41
54
82
128
151
21.5
19.1
18.1
16.5
12.5
9.1
8.1
0.43
0.38
0.36
0.33
0.25
0.18
0.16
1.75
1.55
1.61
1.71
1.61
1.85
1.95
16.11
15.14
14.07
13.13
11.49
9.87
8.28
22.1
20.5
18.1
16.2
13.5
11.5
10.5
0.49
0.38
0.34
0.29
0.16
0.08
0.07
12
22
33
45
71
120
150
16.1
14.1
14.1
13.5
11.1
10.1
8.1
0.32
0.28
0.28
0.27
0.22
0.21
0.16
1.51
1.38
1.41
1.51
1.45
1.65
1.81
21.94
19.34
17.54
16.01
13.82
11.93
10.23
VCE = 2 V, IC = 5 mA
0.9
1.8
2.4
3
4
5
6
0.89
1.08
1.12
1.32
1.35
1.61
1.81
1) Input matched for minimum noise figure, output for maximum gain
2) ZS = ZL = 50
For more and detailed S- and Noise-parameters please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon Technologies Application Notes CD-ROM or see Internet:
http://www.infineon.com/silicondiscretes
3
Sep-26-2001
SIEGET 45
BFP520
SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) :
Transistor Chip Data
IS =
15
aA
BF =
235
-
NF =
1
-
VAF =
25
V
IKF =
0.4
A
ISE =
25
fA
NE =
2
-
BR =
1.5
-
NR =
1
-
VAR =
2
V
IKR =
0.01
A
ISC =
20
fA
NC =
2
-
RB =
11
IRB =
-
A
RBM =
7.5
RE =
0.6
RC =
7.6
CJE =
235
fF
VJE =
0.958
V
MJE =
0.335
-
TF =
1.7
ps
XTF =
10
-
VTF =
5
V
ITF =
0.7
A
PTF =
50
deg
CJC =
93
fF
VJC =
0.661
V
MJC =
0.236
-
XCJC =
1
-
TR =
50
ns
CJS =
0
fF
VJS =
0.75
V
MJS =
0.333
-
XTB =
-0.25
-
EG =
1.11
eV
XTI =
0.035
-
FC =
0.5
-
TNOM
298
K
LBI =
0.47
nH
LBO =
0.53
nH
LEI =
0.23
nH
LEO =
0.05
nH
LCI =
0.56
nH
LCO =
0.58
nH
CBE =
136
fF
CCB =
6.9
fF
CCE =
134
fF
Package Equivalent Circuit:
Valid up to 6GHz
The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit,
both leads are combined in one electrical connection.
For examples and ready to use parameters please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet:
http://www.infineon.com/silicondiscretes
4
Sep-26-2001
SIEGET 45
BFP520
For non-linear simulation:
Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
Simulation of the package is not necessary for frequencies < 100MHz.
For higher frequencies please add the wiring of the package equivalent circuit
around the non-linear transistor.
Advantages of the common emitter configuration:
Higher gain because of lower emitter inductance.
Power is dissipated via the grounded emitter leads, because the chip is mounted
on the copper emitter leadframe.
Please note, that the broadest lead is the emitter lead.
5
Sep-26-2001
SIEGET 45
Total power dissipation Ptot = f (TS )
BFP520
Transition frequency fT = f (IC)
f = 2 GHz
VCE = parameter in V
52
120
mW
GHz
2
44
100
40
90
1
fT
P tot
36
80
32
70
28
60
24
50
40
16
30
12
20
8
10
4
0
0
0.75
20
20
40
60
80
100
120 °C
0
0
150
0.5
5
10
15
20
25
30
35 mA
TS
45
IC
Permissible Pulse Load RthJS = f (tp)
Permissible Pulse Load
P totmax/P totDC = f (tp)
10 1
RthJS
Ptotmax / PtotDC
10 3
K/W
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 2 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
10 0 -7
10
0
tp
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
tp
6
Sep-26-2001
SIEGET 45
BFP520
Power gain Gma, Gms , |S21 |2 = f ( f )
Power gain Gma, Gms = f (I C)
VCE = 2V, IC = 20 mA
VCE = 2V
f = parameter in GHz
32
44
dB
0.9
dB
36
1.8
24
32
Gms
2.4
G
G
28
20
3
24
16
4
20
5
Gma
16
6
12
|S21|2
12
8
8
4
4
0
0.0
1.0
2.0
3.0
4.0
GHz
0
0
6.0
5
10
15
20
25
30
35 mA
45
IC
f
Power gain Gma, Gms = f (VCE)
Collector-base capacitance Ccb = f (VCB)
IC = 20 mA
f = 1MHz
f = parameter in GHz
32
0.30
0.9
dB
pF
1.8
24
Ccb
G
2.4
20
3
4
16
0.20
0.15
5
6
12
0.10
8
0.05
4
0
0.0
0.5
1.0
1.5
2.0
V
0.00
0.0
3.0
VCE
0.5
1.0
1.5
2.0
V
3.0
VCB
7
Sep-26-2001
SIEGET 45
Noise figure F = f (IC )
Noise figure F = f (IC)
VCE = 2 V, ZS = ZSopt
VCE = 2 V, f = 1.8 GHz
3.0
BFP520
3.0
dB
dB
F
2.0
F
2.0
1.5
1.5
f = 6 GHz
f = 5 GHz
f = 4 GHz
f = 3 GHz
f = 2.4 GHz
f = 1.8 GHz
f = 0.9 GHz
1.0
0.5
0.0
0
5
10
15
20
25
30
1.0
Zs = 50Ohm
Zs = Zsopt
0.5
mA
0.0
0
40
5
10
15
20
25
mA
30
IC
40
IC
Noise figure F = f ( f )
Source impedance for min.
VCE = 2 V, ZS = ZSopt
noise figure vs. Frequency
VCE = 2 V, IC = 2 mA / 5 mA
3.0
+j50
+j25
dB
+j100
+j10
3GHz
2.0
4GHz
1.8GHz
0.9GHz
F
5GHz
6GHz
0
1.5
10
25
50
100
0.45GHz
2mA
5mA
1.0
-j10
IC = 5 mA
IC = 2 mA
0.5
-j25
-j100
-j50
0.0
0.0
1.0
2.0
3.0
4.0
5.0 GHz
6.5
f
8
Sep-26-2001