INFINEON Q62702

SIEGET 25
BFP 420
NPN Silicon RF Transistor
3
• For high gain low noise amplifiers
4
• For oscillators up to 10 GHz
• Noise figure F = 1.05 dB at 1.8 GHz
outstanding Gms = 20 dB at 1.8 GHz
• Transition frequency f T = 25 GHz
2
• Gold metalization for high reliability
• SIEGET  25 - Line
1
VPS05605
Siemens Grounded Emitter Transistor
25 GHz f T - Line
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type
Marking Ordering Code
Pin Configuration
BFP 420
AMs
1=B
Q62702-F1591
2=E
Package
3=C
4=E
SOT-343
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
4.5
Collector-base voltage
VCBO
15
Emitter-base voltage
VEBO
1.5
Collector current
IC
35
Base current
IB
3
Total power dissipation, T S ≤ 107 °C
Ptot
160
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ...+150
Storage temperature
Thermal Resistance
T stg
-65 ...+150
Junction - soldering point
1)
RthJS
Value
≤ 270
Unit
V
mA
K/W
1) TS is measured on the collector lead at the soldering point to the pcb
Semiconductor Group
Semiconductor Group
11
Jul-14-1998
1998-11-01
BFP 420
Electrical Characteristics at TA = 25°C, unless otherwise specified.
Parameter
Symbol
Values
Unit
min.
typ.
max.
4.5
5
6.5
V
I CBO
-
-
200
nA
I EBO
-
-
35
µA
hFE
50
80
150
-
fT
20
25
-
Ccb
-
0.15
0.24
Cce
-
0.41
-
Ceb
-
0.55
-
F
-
1.05
1.4
Gms
-
20
-
14
17
-
dB
IP3
-
22
-
dBm
P-1dB
-
12
-
DC characteristics
Collector-emitter breakdown voltage
I C = 1 mA, I B = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 1.5 V, I C = 0
DC current gain
I C = 20 mA, VCE = 4 V
V(BR)CEO
AC characteristics
Transition frequency
IC = 30 mA, VCE = 3 V, f = 2 GHz
Collector-base capacitance
VCB = 2 V, f = 1 MHz
Collector-emitter capacitance
VCE = 2 V, f = 1 MHz
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz
Noise figure
IC = 5 mA, VCE = 2 V, ZS = ZSopt ,
f = 1.8 GHz
Power gain 1)
IC = 20 mA, VCE = 2 V, ZS = ZSopt , ZL = ZLopt ,
f = 1.8 GHz
Insertion power gain
IC = 20 mA, VCE = 2 V, f = 1.8 GHz,
ZS = ZL = 50Ω
Third order intersept point
IC = 20 mA, VCE = 2 V, ZS =ZSopt , ZL=ZLopt ,
f = 1.8 GHz
1dB Compression point
IC = 20 mA, VCE = 2 V, f = 1.8 GHz,
ZS=ZSopt , ZL=ZLopt
|S21|2
GHz
pF
dB
1) Gms = |S21 / S12|
Semiconductor Group
Semiconductor Group
22
Jul-14-1998
1998-11-01
BFP 420
Common Emitter S-Parameters
f
GHz
S11
MAG
ANG
S21
S12
S22
MAG
ANG
MAG
ANG
MAG
ANG
36.88
35.4
22.87
13.46
6.93
4.59
3.339
2.15
1.46
1.2
1
178.1
164.4
120.8
96.3
71.5
54.4
38.9
12.9
-16.8
-30.4
-39.5
0.0009
0.0075
0.0272
0.0398
0.062
0.09
0.115
0.156
0.172
0.174
0.172
95.8
79.3
58.7
55.2
53.5
48.6
40.5
25.3
5.4
-5
-11.3
0.96
0.946
0.633
0.399
0.227
0.134
0.109
0.136
0.229
0.319
0.405
-0.6
-12.3
-45.2
-60.3
-77.1
-96.7
-144.5
144.1
101.3
86.1
78.6
RN
rn
F50Ω 2)
|S21|2 2)
VCE = 2V, IC = 20mA
0.01
0.1
0.5
1
2
3
4
6
8
9
10
0.543
0.538
0.448
0.417
0.437
0.472
0.53
0.617
0.73
0.788
0.82
-2.5
-25.1
-99.3
-143.6
176.2
152.8
133.3
109.1
82.5
72.6
67
Common Emitter Noise Parameters
f
Fmin 1)
Ga 1)
Γopt
GHz
dB
dB
MAG
ANG
Ω
-
dB
dB
0.19
0.11
0.11
0.19
0.28
0.37
0.44
30
64
116
165
-155
-130
-117
8.7
7.5
7
6.5
7
10
15
0.17
0.15
0.14
0.13
0.14
0.2
0.3
1.02
1.11
1.32
1.48
1.83
2.2
3.3
20.3
15.8
13.5
11.6
9.1
7
5.3
V CE = 2V, IC = 5mA
0.9
1.8
2.4
3
4
5
6
0.9
1.05
1.25
1.38
1.55
1.75
2.2
20.5
15.2
13
12.1
10.3
8.6
6.4
1) Input matched for minimum noise figure, output for maximum gain
2) Z S = ZL = 50Ω
For more and detailed S- and Noise-parameters please contact your local Siemens
distributor or sales office to obtain a Siemens Application Notes CD-ROM or see Internet:
http://www.siemens.de/Semiconductor/products/35/35.htm
Semiconductor Group
Semiconductor Group
33
Jul-14-1998
1998-11-01
BFP 420
SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) :
Transistor Chip Data
IS =
0.20045
aA
BF =
72.534
-
NF =
1.2432
-
VAF =
28.383
V
IKF =
0.48731
A
ISE =
19.049
pA
NE =
2.0518
-
BR =
7.8287
-
NR =
1.3325
-
VAR =
19.705
V
IKR =
0.69141
A
ISC =
0.019237
A
NC =
1.1724
-
RB =
3.4849
Ω
IRB =
0.72983
mA
RBM =
8.5757
Ω
RE =
0.31111
RC =
0.10105
Ω
CJE =
1.8063
fF
VJE =
0.8051
V
MJE =
0.46576
-
TF =
6.7661
ps
XTF =
0.42199
-
VTF =
0.23794
V
ITF =
1
mA
PTF =
0
deg
CJC =
234.53
fF
VJC =
0.81969
V
MJC =
0.30232
-
XCJC =
0.3
-
TR =
2.3249
ns
CJS =
0
F
VJS =
0.75
V
MJS =
0
-
XTB =
0
-
EG =
1.11
eV
XTI =
3
-
FC =
0.73234
-
TNOM
300
K
-
RS =
10
Ω
L BI =
0.47
nH
L BO =
0.53
nH
L EI =
0.23
nH
L EO =
0.05
nH
L CI =
0.56
nH
L CO =
0.58
nH
C BE =
136
fF
C CB =
6.9
fF
C CE =
134
fF
C’-E’-Diode Data (Berkley-SPICE 2G.6 Syntax) :
IS =
3.5
fA
N=
1.02
All parameters are ready to use, no scalling is necessary
Package Equivalent Circuit:
C CB
L BO
L BI
B
B’
Transistor
Chip
E’
C BE
C’
L CI
L CO
C
C’-E’Diode
C CE
L EI
L EO
E
EHA07389
Valid up to 6GHz
The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit,
both leads are combined in one electrical connection.
Extracted on behalf of SIEMENS Small Signal Semiconductors by:
Institut für Mobil-und Satellitentechnik (IMST)
 1996 SIEMENS AG
For examples and ready to use parameters please contact your local Siemens distributor or sales office to
obtain a Siemens CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/35.htm
Semiconductor Group
Semiconductor Group
44
Jul-14-1998
1998-11-01
BFP 420
For non-linear simulation:
• Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
• If you need simulation of thereverse characteristics, add the diode with the
C’-E’- diode data between collector and emitter.
• Simulation of package is not necessary for frequenties < 100MHz.
For higher frequencies add the wiring of package equivalent circuit around the
non-linear transistor and diode model.
Note:
• This transistor is constructed in a common emitter configuration. This feature causes
an additional reverse biased diode between emitter and collector, which does not
effect normal operation.
C
B
E
E
EHA07307
Transistor Schematic Diagram
The common emitter configuration shows the following advantages:
• Higher gain because of lower emitter inductance.
• Power is dissipated via the grounded emitter leads, because the chip is mounted
on copper emitter leadframe.
Please note, that the broadest lead is the emitter lead.
The AC characteristics are verified by random sampling.
Semiconductor Group
Semiconductor Group
55
Jul-14-1998
1998-11-01
BFP 420
Total power dissipation P tot = f (T A*, TS)
Transition frequency fT = f (IC)
* Package mounted on epoxy
f = 2 GHz
VCE = parameter in V
200
30
GHz
mW
2 to 4
1.5
160
24
Ptot
fT
1
22
140
TS
0.75
20
120
18
TA
100
16
14
80
12
0.5
10
60
8
40
6
4
20
2
0
0
20
40
60
80
100
120 °C
0
0
150
5
10
15
20
25
30
TA,TS
mA
40
IC
Permissible Pulse Load
Permissible Pulse Load R thJS = f (tp)
Ptotmax/P totDC = f (tp)
10 3
10 1
Pmax
/ PDC
K/W
RthJS
-
10 2
10 1 -7
10
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
10 0 -7
10
0
tp
Semiconductor Group
Semiconductor Group
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
tp
66
Jul-14-1998
1998-11-01
BFP 420
Power gain G ma, G ms, |S 21|2 = f ( f )
VCE = 2V, I C = 20 mA
Power gain Gma, Gms = f (I C)
VCE = 2V
f = parameter in GHz
44
30
dB
dB
0.9
36
G
24
G
32
Gms
28
22
1.8
20
18
24
16
20
14
2.4
3
4
12
16
|S21 |2
5
10
Gma
12
8
8
6
6
4
4
0
0.0
2
1.0
2.0
3.0
4.0
GHz
0
0
6.0
4
8
12
16
20
24
32 mA
28
f
40
IC
Power gain G ma, G ms = f (V CE)
I C = 20 mA
Collector-base capacitance Ccb = f (VCB)
VBE = 0, f = 1MHz
f = parameter in GHz
0.30
30
dB
0.9
pF
24
G
22
Ccb
1.8
0.20
20
2.4
18
16
3
14
4
0.15
12
5
10
0.10
6
8
6
0.05
4
2
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
V
0.00
0
4.5
VCE
Semiconductor Group
Semiconductor Group
1
2
V
4
VCB
77
Jul-14-1998
1998-11-01
BFP 420
Noise figure F = f (IC)
Noise figure F = f (IC)
VCE = 2 V, ZS = Z Sopt
VCE = 2 V, f = 1.8 GHz
4.0
3.0
dB
dB
3.0
F
F
2.0
2.5
2.0
1.5
ZS = 50 Ohm
ZS = ZSopt
1.5
1.0
0.5
0.0
0
1.0
f = 6 GHz
f = 5 GHz
f = 4 GHz
f = 3 GHz
f = 2.4 GHz
f = 1.8 GHz
f = 0.9 GHz
4
8
12
16
20
24
28
0.5
0.0
0
32 mA 38
4
8
12
16
20
28 mA
24
IC
36
IC
Noise figure F = f ( f )
Source impedance for min.
VCE = 2 V, ZS = Z Sopt
Noise Figure versus Frequency
VCE = 2 V, I C = 5 mA / 20 mA
3.0
+j50
dB
+j25
+j100
+j10
2.0
F
2.4GHz
1.8GHz
3GHz
0
1.5
10
25
0.9GHz
50
100
0.45GHz
4GHz
1.0
5GHz
-j10
IC = 20 mA
IC = 5 mA
6GHz
0.5
-j100
-j25
-j50
0.0
0.0
1.0
2.0
3.0
4.0
GHz
6.0
f
Semiconductor Group
Semiconductor Group
88
Jul-14-1998
1998-11-01