SIEGET 25 BFP 450 NPN Silicon RF Transistor 3 • For medium power amplifiers 4 • Compression point P -1dB = +19 dBm at 1.8 GHz maximum available gain G ma = 14 dB at 1.8 GHz Noise figure F = 1.25 dB at 1.8 GHz • Transition frequency f T = 24 GHz • Gold metalization for high reliability • SIEGET 25 - Line 2 1 VPS05605 Siemens Grounded Emitter Transistor 25 GHz f T - Line ESD: Electrostatic discharge sensitive device, observe handling precaution! Type Marking Ordering Code Pin Configuration BFP 450 ANs 1=B Q62702-F1590 2=E Package 3=C 4=E SOT-343 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 4.5 Collector-base voltage VCBO 15 Emitter-base voltage VEBO 1.5 Collector current IC 100 Base current IB 10 Total power dissipation, T S ≤ 96 °C Ptot 450 mW Junction temperature Tj 150 °C Ambient temperature TA -65 ...+150 Storage temperature Tstg -65 ...+150 V mA Thermal Resistance Junction - soldering point 1) RthJS ≤ 130 K/W 1) TS is measured on the collector lead at the soldering point to the pcb Semiconductor Group Semiconductor Group 11 Sep-09-1998 1998-11-01 BFP 450 Electrical Characteristics at TA = 25°C, unless otherwise specified. Parameter Symbol Values Unit min. typ. max. 4.5 5 6.5 V I CBO - - 600 nA I EBO - - 100 µA hFE 50 80 150 - DC characteristics Collector-emitter breakdown voltage I C = 1 mA, I B = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 1.5 V, I C = 0 DC current gain I C = 50 mA, VCE = 4 V V(BR)CEO AC characteristics Transition frequency IC = 90 mA, VCE = 3 V, f = 1 GHz IC = 90 mA, VCE = 3 V, f = 2 GHz Collector-base capacitance VCB = 2 V, f = 1 MHz Collector-emitter capacitance VCE = 2 V, f = 1 MHz Emitter-base capacitance VEB = 0.5 V, f = 1 MHz Noise figure IC = 10 mA, VCE = 2 V, ZS = ZSopt , f = 1.8 GHz Power gain 2) IC = 50 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Insertion power gain IC = 50 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZL = 50Ω Third order intersept point IC = 50 mA, VCE = 3 V, ZS =ZSopt , ZL=ZLopt , f = 1.8 GHz 1dB Compression point IC = 50 mA, VCE = 3 V, f = 1.8 GHz, ZS=ZSopt , ZL=ZLopt GHz fT Ccb 15 - 24 17 0.48 0.75 Cce - 1.33 - Ceb - 1.75 - F - 1.25 1.6 dB Gma - 14 - dB |S21|2 8 11 - IP3 - 29 - P-1dB - 19 - pF dBm 2) Gma = |S21 / S12| (k-(k2-1)1/2) Semiconductor Group Semiconductor Group 22 Sep-09-1998 1998-11-01 BFP 450 Common Emitter S-Parameters f GHz S11 MAG ANG S21 S12 S22 MAG ANG MAG ANG MAG ANG 69.9 51.98 14.86 7.26 3.42 2.22 1.62 1.23 1.01 174.8 125.6 90.7 74.6 55 38.4 22.4 8.8 -2.9 0.0018 0.0139 0.0289 0.047 0.08 0.1183 0.1461 0.1633 0.1864 85.2 59.6 51.4 55.7 51.2 42 30.3 20.7 12.6 0.904 0.744 0.466 0.464 0.491 0.529 0.587 0.606 0.625 -6.6 -64.2 -146.1 -172.2 163.6 145.5 131.9 119.5 108.9 RN rn F50Ω 2) |S21|2 2) VCE = 2V, IC = 50mA 0.01 0.1 0.5 1 2 3 4 5 6 0.143 0.469 0.681 0.705 0.73 0.752 0.783 0.797 0.813 -30.7 -121.7 -172.4 173.1 154.7 139.5 124.1 112.5 103.7 Common Emitter Noise Parameters f Fmin 1) Ga 1) Γopt GHz dB dB MAG ANG Ω - dB dB 0.29 0.47 0.56 0.62 0.66 175 -171 -159 -147 -127 2.7 3 3.5 5.5 15.5 0.054 0.06 0.07 0.11 0.31 0.98 1.74 2.23 3.05 4.49 16 9.5 6.8 4.7 1.9 V CE = 2V, I C = 10mA 0.9 1.8 2.4 3 4 0.9 1.25 1.45 1.7 2.1 15.5 11.8 10.9 8.5 6.6 1) Input matched for minimum noise figure, output for maximum gain 2) Z S = ZL = 50Ω For more and detailed S- and Noise-parameters please contact your local Siemens distributor or sales office to obtain a Siemens Application Notes CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/35.htm Semiconductor Group Semiconductor Group 33 Sep-09-1998 1998-11-01 BFP 450 SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) : Transistor Chip Data IS = 0.13125 fA BF = 76.123 - NF = 0.79652 - VAF = 24.165 V IKF = 0.58905 A ISE = 28.341 pA NE = 1.5563 - BR = 21.254 - NR = 1.2966 - VAR = 13.461 V IKR = 0.25878 A ISC = 0.012292 A NC = 0.70543 - RB = 2.1659 Ω IRB = 0.013181 mA RBM = 5.403 Ω RE = 0.45346 RC = 0.50084 Ω CJE = 3.2276 fF VJE = 0.95292 V MJE = 0.48672 - TF = 7.5068 ps XTF = 0.69972 - VTF = 0.66148 V ITF = 0.017655 mA PTF = 0 deg CJC = 1049.5 fF VJC = 1.1487 V MJC = 0.50644 - XCJC = 0.28285 - TR = 2.6912 ns CJS = 0 F VJS = 0.75 V MJS = 0 - XTB = 0 - EG = 1.11 eV XTI = 3 - FC = 0.91274 - TNOM 300 K - RS = 5 Ω L BI = 0.31 nH L BO = 0.63 nH L EI = 0.2 nH L EO = 0.05 nH L CI = 0.29 nH L CO = 0.68 nH C BE = 208 fF C CB = 3.2 fF C CE = 213 fF C’-E’-Diode Data (Berkley-SPICE 2G.6 Syntax) : IS = 25 fA N= 1.05 All parameters are ready to use, no scalling is necessary Package Equivalent Circuit: C CB L BO L BI B B’ Transistor Chip E’ C BE C’ L CI L CO C C’-E’Diode C CE L EI L EO E EHA07389 Valid up to 6GHz The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection. Extracted on behalf of SIEMENS Small Signal Semiconductors by: Institut für Mobil-und Satellitentechnik (IMST) 1996 SIEMENS AG For examples and ready to use parameters please contact your local Siemens distributor or sales office to obtain a Siemens CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/35.htm Semiconductor Group Semiconductor Group 44 Sep-09-1998 1998-11-01 BFP 450 For non-linear simulation: • Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators. • If you need simulation of thereverse characteristics, add the diode with the C’-E’- diode data between collector and emitter. • Simulation of package is not necessary for frequenties < 100MHz. For higher frequencies add the wiring of package equivalent circuit around the non-linear transistor and diode model. Note: • This transistor is constructed in a common emitter configuration. This feature causes an additional reverse biased diode between emitter and collector, which does not effect normal operation. C B E E EHA07307 Transistor Schematic Diagram The common emitter configuration shows the following advantages: • Higher gain because of lower emitter inductance. • Power is dissipated via the grounded emitter leads, because the chip is mounted on copper emitter leadframe. Please note, that the broadest lead is the emitter lead. The AC characteristics are verified by random sampling. Semiconductor Group Semiconductor Group 55 Sep-09-1998 1998-11-01 BFP 450 Total power dissipation P tot = f (T A*, TS) Transition frequency fT = f (IC) * Package mounted on epoxy f = 1 GHz VCE = parameter in V 500 28 GHz mW 400 TS TA 1.5 22 1 20 0.75 18 fT P tot 350 2 to 4 24 300 16 250 0.5 14 12 200 10 150 8 100 6 4 50 0 0 2 20 40 60 80 100 120 °C 0 0 150 20 40 60 mA 80 TA,TS 120 IC Permissible Pulse Load Permissible Pulse Load R thJS = f (tp) Ptotmax/P totDC = f (tp) 10 3 10 1 RthJS Pmax / PDC K/W - 10 2 10 1 -7 10 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 10 0 -7 10 0 tp Semiconductor Group Semiconductor Group 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 tp 66 Sep-09-1998 1998-11-01 BFP 450 Power gain G ma, G ms, |S 21|2 = f ( f ) VCE = 2V, I C = 50 mA Power gain Gma, Gms = f (I C) VCE = 2V f = parameter in GHz 48 28 dB dB 24 40 0.9 22 36 20 28 18 Gms G G 32 16 24 14 20 12 1.8 2.4 3 10 16 4 8 12 8 G ma |S21 |2 4 4 0 0.0 5 6 6 2 1.0 2.0 3.0 4.0 GHz 0 0 6.0 20 40 60 mA 80 f 120 IC Power gain G ma, G ms = f (V CE) I C = 50 mA Collector-base capacitance Ccb = f (VCB) VBE = 0, f = 1MHz f = Parameter in GHz 26 1.4 dB 0.9 pF 22 20 1.0 Ccb G 18 1.8 16 14 2.4 12 3 10 4 8 5 6 6 0.8 0.6 0.4 4 0.2 2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V 0.0 0.0 4.5 VCE Semiconductor Group Semiconductor Group 0.5 1.0 1.5 2.0 2.5 3.0 V 4.0 VCB 77 Sep-09-1998 1998-11-01 BFP 450 Noise figure F = f (IC) Noise figure F = f (IC) VCE = 2 V, ZS = Z Sopt VCE = 2 V, f = 1.8 GHz 4.5 3.0 dB dB 3.5 3.0 F F 2.0 2.5 1.5 2.0 1.0 0.5 0.0 0 1.5 f = 4 GHz f = 3 GHz f = 2.4 GHz f = 1.8 GHz f = 0.9 GHz 10 20 30 40 50 60 70 1.0 ZS = 50Ohm ZS = ZSopt 0.5 80 mA 0.0 0 100 10 20 30 40 50 60 70 IC 80 mA 100 IC Noise figure F = f ( f ) Source impedance for min. VCE = 2 V, ZS = Z Sopt Noise Figure versus Frequency VCE = 2 V, I C = 10 mA / 50 mA 3.0 +j50 dB +j25 +j100 +j10 F 2.0 1.8GHz 0 1.5 10 0.9GHz 25 50 100 2.4GHz 3GHz 1.0 -j10 IC = 50 mA IC = 10 mA 10mA 50mA 4GHz 0.5 -j100 -j25 -j50 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 GHz 4.5 f Semiconductor Group Semiconductor Group 88 Sep-09-1998 1998-11-01