INFINEON Q62702

SIEGET 25
BFP 450
NPN Silicon RF Transistor
3
• For medium power amplifiers
4
• Compression point P -1dB = +19 dBm at 1.8 GHz
maximum available gain G ma = 14 dB at 1.8 GHz
Noise figure F = 1.25 dB at 1.8 GHz
• Transition frequency f T = 24 GHz
• Gold metalization for high reliability
• SIEGET  25 - Line
2
1
VPS05605
Siemens Grounded Emitter Transistor
25 GHz f T - Line
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type
Marking Ordering Code
Pin Configuration
BFP 450
ANs
1=B
Q62702-F1590
2=E
Package
3=C
4=E
SOT-343
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
4.5
Collector-base voltage
VCBO
15
Emitter-base voltage
VEBO
1.5
Collector current
IC
100
Base current
IB
10
Total power dissipation, T S ≤ 96 °C
Ptot
450
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ...+150
Storage temperature
Tstg
-65 ...+150
V
mA
Thermal Resistance
Junction - soldering point
1)
RthJS
≤ 130
K/W
1) TS is measured on the collector lead at the soldering point to the pcb
Semiconductor Group
Semiconductor Group
11
Sep-09-1998
1998-11-01
BFP 450
Electrical Characteristics at TA = 25°C, unless otherwise specified.
Parameter
Symbol
Values
Unit
min.
typ.
max.
4.5
5
6.5
V
I CBO
-
-
600
nA
I EBO
-
-
100
µA
hFE
50
80
150
-
DC characteristics
Collector-emitter breakdown voltage
I C = 1 mA, I B = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 1.5 V, I C = 0
DC current gain
I C = 50 mA, VCE = 4 V
V(BR)CEO
AC characteristics
Transition frequency
IC = 90 mA, VCE = 3 V, f = 1 GHz
IC = 90 mA, VCE = 3 V, f = 2 GHz
Collector-base capacitance
VCB = 2 V, f = 1 MHz
Collector-emitter capacitance
VCE = 2 V, f = 1 MHz
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz
Noise figure
IC = 10 mA, VCE = 2 V, ZS = ZSopt ,
f = 1.8 GHz
Power gain 2)
IC = 50 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt ,
f = 1.8 GHz
Insertion power gain
IC = 50 mA, VCE = 2 V, f = 1.8 GHz,
ZS = ZL = 50Ω
Third order intersept point
IC = 50 mA, VCE = 3 V, ZS =ZSopt , ZL=ZLopt ,
f = 1.8 GHz
1dB Compression point
IC = 50 mA, VCE = 3 V, f = 1.8 GHz,
ZS=ZSopt , ZL=ZLopt
GHz
fT
Ccb
15
-
24
17
0.48
0.75
Cce
-
1.33
-
Ceb
-
1.75
-
F
-
1.25
1.6
dB
Gma
-
14
-
dB
|S21|2
8
11
-
IP3
-
29
-
P-1dB
-
19
-
pF
dBm
2) Gma = |S21 / S12| (k-(k2-1)1/2)
Semiconductor Group
Semiconductor Group
22
Sep-09-1998
1998-11-01
BFP 450
Common Emitter S-Parameters
f
GHz
S11
MAG
ANG
S21
S12
S22
MAG
ANG
MAG
ANG
MAG
ANG
69.9
51.98
14.86
7.26
3.42
2.22
1.62
1.23
1.01
174.8
125.6
90.7
74.6
55
38.4
22.4
8.8
-2.9
0.0018
0.0139
0.0289
0.047
0.08
0.1183
0.1461
0.1633
0.1864
85.2
59.6
51.4
55.7
51.2
42
30.3
20.7
12.6
0.904
0.744
0.466
0.464
0.491
0.529
0.587
0.606
0.625
-6.6
-64.2
-146.1
-172.2
163.6
145.5
131.9
119.5
108.9
RN
rn
F50Ω 2)
|S21|2 2)
VCE = 2V, IC = 50mA
0.01
0.1
0.5
1
2
3
4
5
6
0.143
0.469
0.681
0.705
0.73
0.752
0.783
0.797
0.813
-30.7
-121.7
-172.4
173.1
154.7
139.5
124.1
112.5
103.7
Common Emitter Noise Parameters
f
Fmin 1)
Ga 1)
Γopt
GHz
dB
dB
MAG
ANG
Ω
-
dB
dB
0.29
0.47
0.56
0.62
0.66
175
-171
-159
-147
-127
2.7
3
3.5
5.5
15.5
0.054
0.06
0.07
0.11
0.31
0.98
1.74
2.23
3.05
4.49
16
9.5
6.8
4.7
1.9
V CE = 2V, I C = 10mA
0.9
1.8
2.4
3
4
0.9
1.25
1.45
1.7
2.1
15.5
11.8
10.9
8.5
6.6
1) Input matched for minimum noise figure, output for maximum gain
2) Z S = ZL = 50Ω
For more and detailed S- and Noise-parameters please contact your local Siemens
distributor or sales office to obtain a Siemens Application Notes CD-ROM or see Internet:
http://www.siemens.de/Semiconductor/products/35/35.htm
Semiconductor Group
Semiconductor Group
33
Sep-09-1998
1998-11-01
BFP 450
SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) :
Transistor Chip Data
IS =
0.13125
fA
BF =
76.123
-
NF =
0.79652
-
VAF =
24.165
V
IKF =
0.58905
A
ISE =
28.341
pA
NE =
1.5563
-
BR =
21.254
-
NR =
1.2966
-
VAR =
13.461
V
IKR =
0.25878
A
ISC =
0.012292
A
NC =
0.70543
-
RB =
2.1659
Ω
IRB =
0.013181
mA
RBM =
5.403
Ω
RE =
0.45346
RC =
0.50084
Ω
CJE =
3.2276
fF
VJE =
0.95292
V
MJE =
0.48672
-
TF =
7.5068
ps
XTF =
0.69972
-
VTF =
0.66148
V
ITF =
0.017655
mA
PTF =
0
deg
CJC =
1049.5
fF
VJC =
1.1487
V
MJC =
0.50644
-
XCJC =
0.28285
-
TR =
2.6912
ns
CJS =
0
F
VJS =
0.75
V
MJS =
0
-
XTB =
0
-
EG =
1.11
eV
XTI =
3
-
FC =
0.91274
-
TNOM
300
K
-
RS =
5
Ω
L BI =
0.31
nH
L BO =
0.63
nH
L EI =
0.2
nH
L EO =
0.05
nH
L CI =
0.29
nH
L CO =
0.68
nH
C BE =
208
fF
C CB =
3.2
fF
C CE =
213
fF
C’-E’-Diode Data (Berkley-SPICE 2G.6 Syntax) :
IS =
25
fA
N=
1.05
All parameters are ready to use, no scalling is necessary
Package Equivalent Circuit:
C CB
L BO
L BI
B
B’
Transistor
Chip
E’
C BE
C’
L CI
L CO
C
C’-E’Diode
C CE
L EI
L EO
E
EHA07389
Valid up to 6GHz
The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit,
both leads are combined in one electrical connection.
Extracted on behalf of SIEMENS Small Signal Semiconductors by:
Institut für Mobil-und Satellitentechnik (IMST)
 1996 SIEMENS AG
For examples and ready to use parameters please contact your local Siemens distributor or sales office to
obtain a Siemens CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/35.htm
Semiconductor Group
Semiconductor Group
44
Sep-09-1998
1998-11-01
BFP 450
For non-linear simulation:
• Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
• If you need simulation of thereverse characteristics, add the diode with the
C’-E’- diode data between collector and emitter.
• Simulation of package is not necessary for frequenties < 100MHz.
For higher frequencies add the wiring of package equivalent circuit around the
non-linear transistor and diode model.
Note:
• This transistor is constructed in a common emitter configuration. This feature causes
an additional reverse biased diode between emitter and collector, which does not
effect normal operation.
C
B
E
E
EHA07307
Transistor Schematic Diagram
The common emitter configuration shows the following advantages:
• Higher gain because of lower emitter inductance.
• Power is dissipated via the grounded emitter leads, because the chip is mounted
on copper emitter leadframe.
Please note, that the broadest lead is the emitter lead.
The AC characteristics are verified by random sampling.
Semiconductor Group
Semiconductor Group
55
Sep-09-1998
1998-11-01
BFP 450
Total power dissipation P tot = f (T A*, TS)
Transition frequency fT = f (IC)
* Package mounted on epoxy
f = 1 GHz
VCE = parameter in V
500
28
GHz
mW
400
TS
TA
1.5
22
1
20
0.75
18
fT
P tot
350
2 to 4
24
300
16
250
0.5
14
12
200
10
150
8
100
6
4
50
0
0
2
20
40
60
80
100
120 °C
0
0
150
20
40
60
mA
80
TA,TS
120
IC
Permissible Pulse Load
Permissible Pulse Load R thJS = f (tp)
Ptotmax/P totDC = f (tp)
10 3
10 1
RthJS
Pmax
/ PDC
K/W
-
10 2
10 1 -7
10
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
10 0 -7
10
0
tp
Semiconductor Group
Semiconductor Group
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
tp
66
Sep-09-1998
1998-11-01
BFP 450
Power gain G ma, G ms, |S 21|2 = f ( f )
VCE = 2V, I C = 50 mA
Power gain Gma, Gms = f (I C)
VCE = 2V
f = parameter in GHz
48
28
dB
dB
24
40
0.9
22
36
20
28
18
Gms
G
G
32
16
24
14
20
12
1.8
2.4
3
10
16
4
8
12
8
G ma
|S21 |2
4
4
0
0.0
5
6
6
2
1.0
2.0
3.0
4.0
GHz
0
0
6.0
20
40
60
mA
80
f
120
IC
Power gain G ma, G ms = f (V CE)
I C = 50 mA
Collector-base capacitance Ccb = f (VCB)
VBE = 0, f = 1MHz
f = Parameter in GHz
26
1.4
dB
0.9
pF
22
20
1.0
Ccb
G
18
1.8
16
14
2.4
12
3
10
4
8
5
6
6
0.8
0.6
0.4
4
0.2
2
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
V
0.0
0.0
4.5
VCE
Semiconductor Group
Semiconductor Group
0.5
1.0
1.5
2.0
2.5
3.0
V
4.0
VCB
77
Sep-09-1998
1998-11-01
BFP 450
Noise figure F = f (IC)
Noise figure F = f (IC)
VCE = 2 V, ZS = Z Sopt
VCE = 2 V, f = 1.8 GHz
4.5
3.0
dB
dB
3.5
3.0
F
F
2.0
2.5
1.5
2.0
1.0
0.5
0.0
0
1.5
f = 4 GHz
f = 3 GHz
f = 2.4 GHz
f = 1.8 GHz
f = 0.9 GHz
10
20
30
40
50
60
70
1.0
ZS = 50Ohm
ZS = ZSopt
0.5
80 mA
0.0
0
100
10
20
30
40
50
60
70
IC
80 mA
100
IC
Noise figure F = f ( f )
Source impedance for min.
VCE = 2 V, ZS = Z Sopt
Noise Figure versus Frequency
VCE = 2 V, I C = 10 mA / 50 mA
3.0
+j50
dB
+j25
+j100
+j10
F
2.0
1.8GHz
0
1.5
10
0.9GHz
25
50
100
2.4GHz
3GHz
1.0
-j10
IC = 50 mA
IC = 10 mA
10mA
50mA
4GHz
0.5
-j100
-j25
-j50
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 GHz
4.5
f
Semiconductor Group
Semiconductor Group
88
Sep-09-1998
1998-11-01