SIEGET 25 BFP420 NPN Silicon RF Transistor 3 For high gain low noise amplifiers 4 For oscillators up to 10 GHz Noise figure F = 1.1 dB at 1.8 GHz outstanding G ms = 21 dB at 1.8 GHz 2 Transition frequency f T = 25 GHz Gold metallization for high reliability 1 VPS05605 SIEGET 25 GHz f T - Line ESD: Electrostatic discharge sensitive device, observe handling precaution! Type Marking BFP420 AMs Pin Configuration 1=B 2=E 3=C Package 4=E SOT343 Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO 4.5 Collector-base voltage VCBO 15 Emitter-base voltage VEBO 1.5 Collector current IC 35 Base current IB 3 Total power dissipation Ptot 160 mW Junction temperature Tj 150 °C Ambient temperature TA -65 ... 150 Storage temperature Tstg -65 ... 150 Value Unit V mA TS 107°C 1) Thermal Resistance Junction - soldering point 2) RthJS 260 K/W 1T is measured on the emitter lead at the soldering point to the pcb S 2For calculation of R please refer to Application Note Thermal Resistance thJA 1 Aug-20-2001 SIEGET 25 BFP420 Electrical Characteristics at TA = 25°C, unless otherwise specified. Symbol Values Parameter Unit min. typ. max. 4.5 5 - V ICBO - - 200 nA IEBO - - 35 µA hFE 50 100 150 - 18 25 - - 0.15 0.3 - 0.37 - - 0.55 - - 1.1 - - 21 - 14 17 - - 22 - - 12 - DC characteristics Collector-emitter breakdown voltage IC = 1 mA, IB = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 1.5 V, IC = 0 DC current gain IC = 20 mA, VCE = 4 V V(BR)CEO AC characteristics (verified by random sampling) Transition frequency fT IC = 30 mA, VCE = 3 V, f = 2 GHz Collector-base capacitance Ccb VCB = 2 V, f = 1 MHz Collector-emitter capacitance Cce VCE = 2 V, f = 1 MHz Emitter-base capacitance Ceb VEB = 0.5 V, f = 1 MHz Noise figure F IC = 5 mA, VCE = 2 V, ZS = ZSopt , f = 1.8 GHz Gms Power gain, maximum stable 1) IC = 20 mA, VCE = 2 V, ZS = ZSopt , ZL = ZLopt , f = 1.8 GHz Insertion power gain |S21|2 IC = 20 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZL = 50 Third order intercept point IP3 IC = 20 mA, VCE = 2 V, ZS=ZSopt , ZL =ZLopt , f = 1.8 GHz 1dB Compression point P-1dB IC = 20 mA, VCE = 2 V, f = 1.8 GHz, ZS=ZSopt , ZL =ZLopt 1G ms GHz pF dB dBm = |S21 / S12 | 2 Aug-20-2001 SIEGET 25 BFP420 SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) : Transistor Chip Data IS = 0.20045 fA BF = 72.534 - NF = 1.2432 - VAF = 28.383 V IKF = 0.48731 A ISE = 19.049 fA NE = 2.0518 - BR = 7.8287 - NR = 1.3325 - VAR = 19.705 V IKR = 0.69141 A ISC = 0.019237 fA NC = 1.1724 - RB = 8.5757 IRB = 0.72983 mA RBM = 3.4849 RE = 0.31111 RC = 0.10105 CJE = 1.8063 fF VJE = 0.8051 V MJE = 0.46576 - TF = 6.7661 ps XTF = 0.42199 - VTF = 0.23794 V ITF = 1 mA PTF = 0 deg CJC = 234.53 fF VJC = 0.81969 V MJC = 0.30232 - XCJC = 0.3 - TR = 2.3249 ns CJS = 0 F VJS = 0.75 V MJS = 0 - XTB = 0 - EG = 1.11 eV XTI = 3 - FC = 0.73234 - TNOM 300 K - RS = 10 L BI = 0.47 nH L BO = 0.53 nH L EI = 0.23 nH L EO = 0.05 nH L CI = 0.56 nH L CO = 0.58 nH CBE = 136 fF CCB = 6.9 fF CCE = 134 fF C'-E'-Diode Data (Berkley-SPICE 2G.6 Syntax) : IS = 3.5 fA N= 1.02 All parameters are ready to use, no scaling is necessary Package Equivalent Circuit: C CB L BO L BI B B’ Transistor Chip E’ C BE C’ L CI L CO C C’-E’Diode C CE L EI L EO E EHA07389 Valid up to 6GHz The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection. Extracted on behalf of Infineon Technologies AG by: Institut für Mobil-und Satellitentechnik (IMST) For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes 3 Aug-20-2001 SIEGET 25 BFP420 For non-linear simulation: Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators. If you need simulation of the reverse characteristics, add the diode with the C'-E'- diode data between collector and emitter. Simulation of package is not necessary for frequencies < 100MHz. For higher frequencies add the wiring of package equivalent circuit around the non-linear transistor and diode model. Note: This transistor is constructed in a common emitter configuration. This feature causes an additional reverse biased diode between emitter and collector, which does not effect normal operation. C B E E EHA07307 Transistor Schematic Diagram The common emitter configuration shows the following advantages: Higher gain because of lower emitter inductance. Power is dissipated via the grounded emitter leads, because the chip is mounted on copper emitter leadframe. Please note, that the broadest lead is the emitter lead. Common Emitter S- and Noise-parameter For detailed S- and Noise-parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies Application Notes CD-ROM or see Internet: http://www.infineon.com/silicondiscretes 4 Aug-20-2001 SIEGET 25 BFP420 Transition frequency fT = f (IC) Total power dissipation Ptot = f (TS ) f = 2 GHz VCE = parameter in V 200 30 GHz mW 2 to 4 1.5 160 24 1 22 0.75 20 fT P tot 140 120 18 16 100 14 12 80 0.5 10 60 8 6 40 4 20 0 0 2 20 40 60 80 100 120 °C 0 0 150 5 10 15 20 25 30 TS mA 40 IC Permissible Pulse Load RthJS = f (tp) Permissible Pulse Load P totmax/P totDC = f (tp) 10 1 Ptotmax / PtotDC 10 3 RthJS K/W 10 2 10 1 -7 10 - 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 -6 10 -5 10 -4 10 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 -3 10 -2 s 10 10 0 -7 10 0 tp 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 tp 5 Aug-20-2001 SIEGET 25 BFP420 Power gain Gma, Gms , |S21 |2 = f ( f ) Power gain Gma, Gms = f (I C) VCE = 2V, IC = 20 mA VCE = 2V f = parameter in GHz 44 30 dB dB 0.9 36 24 22 32 G ms G G 28 1.8 20 18 24 16 20 14 2.4 3 4 12 16 |S 21|2 12 5 10 Gma 6 8 6 8 4 4 2 0 0.0 1.0 2.0 3.0 4.0 GHz 0 0 6.0 4 8 12 16 20 24 28 32 mA 40 IC f Power gain Gma, Gms = f (VCE) Collector-base capacitance Ccb = f (VCB) IC = 20 mA f = 1MHz f = parameter in GHz 0.30 30 dB 0.9 pF 24 22 1.8 Ccb G 20 2.4 18 16 3 14 4 0.20 0.15 12 5 10 0.10 6 8 6 0.05 4 2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V 0.00 0 4.5 VCE 1 2 V 4 VCB 6 Aug-20-2001 SIEGET 25 Noise figure F = f (IC ) Noise figure F = f (IC) VCE = 2 V, ZS = ZSopt VCE = 2 V, f = 1.8 GHz 4.0 BFP420 3.0 dB dB 3.0 2.0 F F 2.5 2.0 1.5 ZS = 50 Ohm ZS = ZSopt 1.5 f = 6 GHz f = 5 GHz f = 4 GHz f = 3 GHz f = 2.4 GHz f = 1.8 GHz f = 0.9 GHz 1.0 0.5 0.0 0 4 8 12 16 20 24 28 1.0 0.5 0.0 0 32 mA 38 4 8 12 16 20 28 mA 24 IC 36 IC Noise figure F = f ( f ) Source impedance for min. VCE = 2 V, ZS = ZSopt Noise Figure versus Frequency VCE = 2 V, IC = 5 mA / 20 mA 3.0 +j50 +j25 dB +j100 +j10 2.0 F 2.4GHz 1.8GHz 3GHz 0 1.5 10 25 0.9GHz 50 100 0.45GHz 4GHz 1.0 5GHz IC = 20 mA IC = 5 mA -j10 6GHz 0.5 -j25 -j100 -j50 0.0 0.0 1.0 2.0 3.0 4.0 GHz 6.0 f 7 Aug-20-2001