PD - 95851 DIGITAL AUDIO MOSFET IRLR4343 IRLU4343 IRLU4343-701 Features Advanced Process Technology Key Parameters Optimized for Class-D Audio Amplifier Applications l Low RDSON for Improved Efficiency l Low Qg and Qsw for Better THD and Improved Efficiency l Low Qrr for Better THD and Lower EMI l 175°C Operating Junction Temperature for Ruggedness l Repetitive Avalanche Capability for Robustness and Reliability l Multiple Package Options l Key Parameters l VDS RDS(ON) typ. @ VGS = 10V RDS(ON) typ. @ VGS = 4.5V Qg typ. TJ max 55 42 57 28 175 V m: m: nC °C D D-Pak IRLR4343 I-Pak IRLU4343 I-Pak Leadform 701 IRLU4343-701 Refer to page 10 for package outline G S Description This Digital Audio HEXFET® is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MosFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier applications. Absolute Maximum Ratings Parameter Max. Units V VDS Drain-to-Source Voltage 55 VGS ±20 ID @ TC = 25°C Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 19 IDM Pulsed Drain Current c 80 PD @TC = 25°C Power Dissipation 79 PD @TC = 100°C Power Dissipation 39 Linear Derating Factor 0.53 W/°C TJ Operating Junction and -40 to + 175 °C TSTG Storage Temperature Range Clamping Pressure h ––– N 26 A W Thermal Resistance Parameter Typ. Max. RθJC Junction-to-Case g ––– 1.9 RθJA Junction-to-Ambient (PCB Mounted) gj Junction-to-Ambient (free air) g ––– 50 ––– 110 RθJA Units °C/W Notes through are on page 10 www.irf.com 1 3/26/04 IRLR/U4343 & IRLU4343-701 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 55 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 15 ––– Static Drain-to-Source On-Resistance ––– 42 50 ––– 57 65 V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 4.7A e VGS = 4.5V, ID = 3.8A e VDS = VGS, ID = 250µA VGS(th) Gate Threshold Voltage 1.0 ––– ––– V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -4.4 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 2.0 µA VDS = 55V, VGS = 0V ––– ––– 25 IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 VDS = 55V, VGS = 0V, TJ = 125°C VGS = -20V VDS = 25V, ID = 19A gfs Forward Transconductance 8.8 ––– ––– Qg Total Gate Charge ––– 28 42 VDS = 44V S Qgs Pre-Vth Gate-to-Source Charge ––– 3.5 ––– VGS = 10V Qgd Gate-to-Drain Charge ––– 9.5 ––– ID = 19A Qgodr Gate Charge Overdrive ––– 15 ––– td(on) Turn-On Delay Time ––– 5.7 ––– See Fig. 6 and 19 VDD = 28V, VGS = 10Ve tr Rise Time ––– 19 ––– ID = 19A td(off) Turn-Off Delay Time ––– 23 ––– tf Fall Time ––– 5.3 ––– Ciss Input Capacitance ––– 740 ––– Coss Output Capacitance ––– 150 ––– Crss Reverse Transfer Capacitance ––– 59 ––– Coss Effective Output Capacitance ––– 250 ––– ƒ = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to -44V LD Internal Drain Inductance ––– 4.5 ––– Between lead, ns VGS = 0V pF nH LS Internal Source Inductance ––– 7.5 RG = 2.5Ω ––– VDS = 50V 6mm (0.25in.) D G from package and center of die contact f S Avalanche Characteristics Parameter Typ. Max. Units 160 mJ EAS Single Pulse Avalanche Energyd ––– IAR Avalanche Currenti See Fig. 14, 15, 17a, 17b EAR Repetitive Avalanche Energy i A mJ Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current Min. Typ. Max. Units ––– ––– (Body Diode) ISM Pulsed Source Current A ––– ––– Conditions MOSFET symbol 26 showing the 80 integral reverse VSD Diode Forward Voltage ––– ––– 1.2 V p-n junction diode. TJ = 25°C, IS = 19A, VGS = 0V e trr Reverse Recovery Time ––– 52 78 ns TJ = 25°C, IF = 19A Qrr Reverse Recovery Charge ––– 100 150 nC di/dt = 100A/µs e (Body Diode)c 2 www.irf.com IRLR/U4343 & IRLU4343-701 1000 1000 VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.5V 2.3V 100 BOTTOM 10 2.3V 1 ≤ 60µs PULSE WIDTH Tj = 25°C 100 BOTTOM 10 2.3V 1 ≤ 60µs PULSE WIDTH Tj = 175°C 0.1 0.1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000.0 ID, Drain-to-Source Current (Α) 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics T J = 25°C 100.0 T J = 175°C 10.0 1.0 VDS = 30V ≤ 60µs PULSE WIDTH 0.1 0 2 4 6 8 10 ID = 19A VGS = 10V 2.0 1.5 1.0 0.5 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 10000 20 VGS, Gate-to-Source Voltage (V) C oss = C ds + C gd Ciss Coss Crss 100 20 40 60 80 100 120 140 160 180 Fig 4. Normalized On-Resistance vs. Temperature VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd 1000 0 T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.5V 2.3V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP ID= 19A VDS= 44V VDS= 28V VDS= 11V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 19 0 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 10 20 30 40 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRLR/U4343 & IRLU4343-701 1000 1000.0 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100.0 T J = 175°C 10.0 1.0 T J = 25°C 100 100µsec 10 1msec Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 10msec 1 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0 1.8 1 10 100 1000 VSD, Source-to-Drain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 2.0 VGS(th) Gate threshold Voltage (V) 30 ID , Drain Current (A) 25 20 15 10 5 1.5 ID = 250µA 1.0 0 0.5 25 50 75 100 125 150 175 -75 -50 T J , Junction Temperature (°C) -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τC τ τ2 Ri (°C/W) 1.359 0.5409 τi (sec) 0.00135 0.003643 Ci= τi/Ri Ci i/Ri 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com 700 200 EAS, Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance ( mΩ) IRLR/U4343 & IRLU4343-701 ID = 19A 150 100 T J = 125°C 50 T J = 25°C 0 2.0 4.0 6.0 8.0 ID 2.4A 3.3A BOTTOM 19A TOP 600 500 400 300 200 100 0 10.0 25 VGS, Gate-to-Source Voltage (V) 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13. Maximum Avalanche Energy Vs. Drain Current 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 tav (sec) Fig 14. Typical Avalanche Current Vs.Pulsewidth 180 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 19A EAR , Avalanche Energy (mJ) 160 140 120 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 5 IRLR/U4343 & IRLU4343-701 Driver Gate Drive D.U.T + - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop InductorInductor Curent Current ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 15V LD VDS DRIVER L VDS + VDD - D.U.T RG + V - DD IAS VGS 20V tp D.U.T A VGS 0.01Ω Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Unclamped Inductive Test Circuit V(BR)DSS Fig 18a. Switching Time Test Circuit VDS tp 90% 10% VGS td(on) I AS Fig 17b. Unclamped Inductive Waveforms tr td(off) tf Fig 18b. Switching Time Waveforms Id Vds Vgs L VCC DUT 0 Vgs(th) 1K Qgs1 Qgs2 Fig 19a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 19b Gate Charge Waveform www.irf.com IRLR/U4343 & IRLU4343-701 D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) 2.38 (.094) 2.19 (.086) 6.73 (.265) 6.35 (.250) 1.14 (.045) 0.89 (.035) -A1.27 (.050) 0.88 (.035) 5.46 (.215) 5.21 (.205) 0.58 (.023) 0.46 (.018) 4 6.45 (.245) 5.68 (.224) 6.22 (.245) 5.97 (.235) 10.42 (.410) 9.40 (.370) 1.02 (.040) 1.64 (.025) 1 2 LEAD ASSIGNMENTS 1 - GATE 3 0.51 (.020) MIN. -B1.52 (.060) 1.15 (.045) 3X 2X 1.14 (.045) 0.76 (.030) 0.89 (.035) 0.64 (.025) 0.25 (.010) 2 - DRAIN 3 - SOURCE 4 - DRAIN 0.58 (.023) 0.46 (.018) M A M B NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2.28 (.090) 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4.57 (.180) 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). D-Pak (TO-252AA) Part Marking Information Notes : T his part marking information applies to devices produced before 02/26/2001 EXAMPLE: T HIS IS AN IRFR120 WIT H AS SEMBLY LOT CODE 9U1P INT ERNAT IONAL RECT IFIER LOGO IRFU120 9U 016 1P DAT E CODE YEAR = 0 WEEK = 16 AS S EMBLY LOT CODE Notes : This part marking information applies to devices produced after 02/26/2001 EXAMPLE: T HIS IS AN IRFR120 WIT H AS SEMBLY LOT CODE 1234 ASS EMBLED ON WW 16, 1999 IN T HE AS SEMBLY LINE "A" INT ERNAT IONAL RECT IFIER LOGO IRFU120 12 ASS EMBLY LOT CODE www.irf.com PART NUMBER 916A 34 DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A 7 IRLR/U4343 & IRLU4343-701 I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) 6.73 (.265) 6.35 (.250) 2.38 (.094) 2.19 (.086) -A- 0.58 (.023) 0.46 (.018) 1.27 (.050) 0.88 (.035) 5.46 (.215) 5.21 (.205) LEAD ASSIGNMENTS 4 6.45 (.245) 5.68 (.224) 6.22 (.245) 5.97 (.235) 1.52 (.060) 1.15 (.045) 1 2 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 3 -B- NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2.28 (.090) 1.91 (.075) 9.65 (.380) 8.89 (.350) 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). 3X 1.14 (.045) 0.76 (.030) 2.28 (.090) 3X 1.14 (.045) 0.89 (.035) 0.89 (.035) 0.64 (.025) 0.25 (.010) M A M B 2X 0.58 (.023) 0.46 (.018) I-Pak (TO-251AA) Part Marking Information Notes : T his part marking information applies to devices produced before 02/26/2001 EXAMPLE: T HIS IS AN IRFR120 WIT H AS S EMBLY LOT CODE 9U1P INT ERNAT IONAL RECT IFIER LOGO IRFU120 016 9U 1P DAT E CODE YEAR = 0 WEEK = 16 AS S EMBLY LOT CODE Notes : T his part marking information applies to devices produced after 02/26/2001 EXAMPLE: T HIS IS AN IRFR120 WIT H AS S EMBLY LOT CODE 5678 AS SEMBLED ON WW 19, 1999 IN T HE AS S EMBLY LINE "A" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE 8 PART NUMBER IRFU120 919A 56 78 DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A www.irf.com IRLR/U4343 & IRLU4343-701 D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. www.irf.com 9 IRLR/U4343 & IRLU4343-701 I-Pak Leadform Option 701 Package Outline Dimensions are shown in millimeters (inches) Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.93mH, RG = 25Ω, IAS = 19A. Pulse width ≤ 400µs; duty cycle ≤ 2%. This only applies for I-Pak, LS of D-Pak is measured between lead and center of die contact Rθ is measured at TJ of approximately 90°C. Contact factory for mounting information Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information When D-Pak mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Refer to D-Pak package for Part Marking, Tape and Reel information. Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.3/04 10 www.irf.com