PD - 96223 IRGI4086PbF PDP TRENCH IGBT Features Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery Circuits in PDP Applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for Improved Panel Efficiency l High Repetitive Peak Current Capability l Lead Free Package l Key Parameters VCE min VCE(ON) typ. @ IC = 25A IRP max @ TC= 25°C TJ max 300 1.29 c V V A °C 230 150 C E C G G TO-220AB Full-Pak E n-channel G G ate C C ollector E E m itter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Parameter VGE IC @ TC = 25°C IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Continuous Collector, VGE @ 15V Repetitive Peak Current Power Dissipation Power Dissipation c Max. Units ±30 25 V 12 230 A 43 17 W 0.34 -40 to + 150 Linear Derating Factor Operating Junction and °C Storage Temperature Range Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw W/°C x 300 x 10lb in (1.1N m) N Thermal Resistance RθJC www.irf.com Junction-to-Case d Parameter Typ. Max. Units ––– 2.9 °C/W 1 02/02/09 IRGI4086PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage Forward Transconductance Total Gate Charge Gate-to-Collector Charge Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On delay time Rise time Turn-Off delay time Fall time 300 ––– ––– ––– ––– ––– ––– ––– 2.6 ––– ––– ––– ––– ––– ––– ––– ––– ––– — — — — — — — — ––– 0.29 1.10 1.29 1.49 1.90 2.57 2.27 ––– -11 2.0 5.0 100 ––– ––– 29 65 22 36 31 112 65 30 33 145 tst Shoot Through Blocking Time 100 98 ––– EPULSE Energy per Pulse ––– 1075 ––– 1432 ––– ––– ––– ––– 2250 110 58 5.0 BVCES Collector-to-Emitter Breakdown Voltage ∆ΒVCES/∆TJ Breakdown Voltage Temp. Coefficient VCE(on) Static Collector-to-Emitter Voltage VGE(th) Gate Threshold Voltage Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current ∆VGE(th)/∆TJ ICES IGES Ciss Coss Crss LC Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Collector Inductance e e e e e e ƒ = 1.0MHz, ––– ––– nH LE Internal Emitter Inductance Notes: Half sine wave with duty cycle = 0.1, ton=2µsec. Rθ is measured at TJ of approximately 90°C. 2 ––– 13 Conditions ––– V VGE = 0V, ICE = 1 mA ––– V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 12A 1.36 VGE = 15V, ICE = 25A 1.55 VGE = 15V, ICE = 40A 1.67 V VGE = 15V, ICE = 70A 2.10 VGE = 15V, ICE = 120A 2.96 VGE = 15V, ICE = 70A, TJ = 150°C ––– 5.0 V VCE = VGE, ICE = 500µA ––– mV/°C 25 µA VCE = 300V, VGE = 0V VCE = 300V, VGE = 0V, TJ = 100°C ––– VCE = 300V, VGE = 0V, TJ = 150°C ––– 100 nA VGE = 30V VGE = -30V -100 ––– S VCE = 25V, ICE = 25A ––– nC VCE = 200V, IC = 25A, VGE = 15V ––– IC = 25A, VCC = 196V — — ns RG = 10Ω, L=200µH, LS= 200nH TJ = 25°C — — IC = 25A, VCC = 196V — — ns RG = 10Ω, L=200µH, LS= 200nH TJ = 150°C — — ––– ns VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V ––– µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V ––– VCC = 240V, RG= 5.1Ω, TJ = 100°C VGE = 0V ––– ––– pF VCE = 30V ––– See Fig.13 Between lead, 6mm (0.25in.) from package and center of die contact Pulse width ≤ 400µs; duty cycle ≤ 2%. www.irf.com IRGI4086PbF 240 240 VGE = 18V VGE = 15V VGE = 12V VGE = 10V 200 200 160 VGE = 8.0V VGE = 6.0V 120 ICE (A) ICE (A) 160 VGE = 18V VGE = 15V VGE = 12V VGE = 10V 120 80 80 40 40 0 VGE = 8.0V VGE = 6.0V 0 0 4 8 12 16 0 4 8 VCE (V) Fig 1. Typical Output Characteristics @ 25°C 160 VGE = 8.0V VGE = 6.0V 120 VGE = 18V VGE = 15V VGE = 12V VGE = 10V 200 ICE (A) ICE (A) 240 VGE = 18V VGE = 15V VGE = 12V VGE = 10V 160 16 Fig 2. Typical Output Characteristics @ 75°C 240 200 12 VCE (V) 120 80 80 40 40 0 VGE = 8.0V VGE = 6.0V 0 0 4 8 12 16 0 4 8 VCE (V) 12 16 VCE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 240 10 IC = 25A 200 8 T J = 25°C T J = 150°C VCE (V) ICE (A) 160 120 TJ = 25°C TJ = 150°C 6 4 80 2 40 0 0 2 4 6 8 10 12 14 VGE (V) Fig 5. Typical Transfer Characteristics www.irf.com 16 5 10 15 20 V GE (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRGI4086PbF 240 30 ton= 2µs Duty cycle <= 0.05 Half Sine Wave 220 25 Repetitive Peak Current (A) 200 IC (A) 20 15 10 5 180 160 140 120 100 80 60 40 20 0 0 25 50 75 100 125 0 150 25 T C (°C) 75 100 125 150 Case Temperature (°C) Fig 7. Maximum Collector Current vs. Case Temperature Fig 8. Typical Repetitive Peak Current vs. Case Temperature 1600 1500 1400 VCC = 240V 1300 L = 220nH C = variable L = 220nH C = 0.4µF 1400 100°C 1200 Energy per Pulse (µJ) Energy per Pulse (µJ) 50 1100 1000 900 800 25°C 700 600 100°C 1200 1000 800 25°C 600 400 500 200 400 160 170 180 190 200 210 220 150 160 170 180 190 200 210 220 230 240 230 VCE, Collector-to-Emitter Voltage (V) IC, Peak Collector Current (A) Fig 9. Typical EPULSE vs. Collector Current Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 2000 1000 VCC = 240V L = 220nH t = 1µs half sine C= 0.4µF 100 10µsec 1200 100µsec IC (A) Energy per Pulse (µJ) 1600 C= 0.3µF 800 10 1 400 C= 0.2µF Tc = 25°C Tj = 150°C Single Pulse 0 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 1msec 150 0.1 1 10 100 1000 VCE (V) Fig 12. Forward Bias Safe Operating Area www.irf.com IRGI4086PbF 25 VGE, Gate-to-Source Voltage (V) 10000 Capacitance (pF) Cies 1000 100 Coes Cres ID= 25A VDS = 240V VDS = 200V VDS = 150V 20 15 10 5 0 10 0 100 200 0 300 20 40 60 80 100 QG Total Gate Charge (nC) VCE (V) Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 τJ 0.01 0.01 0.001 1E-006 0.0001 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ3 τ2 τ3 τ4 τi (sec) Ri (°C/W) R4 R4 τ4 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 R1 R1 0.12489 0.00005 0.35135 0.001807 1.07738 0.133584 1.34638 2.34 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT) www.irf.com 5 IRGI4086PbF A RG C DRIVER PULSE A L VCC B RG PULSE B Ipulse DUT tST Fig 16b. tst Test Waveforms Fig 16a. tst and EPULSE Test Circuit VCE Energy L IC Current VCC DUT 0 1K Fig 16c. EPULSE Test Waveforms 6 Fig. 17 - Gate Charge Circuit (turn-off) www.irf.com IRGI4086PbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information (;$03/( 7+,6,6$1,5),* :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(. 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5),* . '$7(&2'( <($5 :((. /,1(. TO-220AB Full-Pak package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ The specifications set forth in this data sheet are the sole and exclusive specifications applicable to the identified product, and no specifications or features are implied whether by industry custom, sampling or otherwise. We qualify our products in accordance with our internal practices and procedures, which by their nature do not include qualification to all possible or even all widely used applications. Without limitation, we have not qualified our product for medical use or applications involving hi-reliability applications. Customers are encouraged to and responsible for qualifying product to their own use and their own application environments, especially where particular features are critical to operational performance or safety. Please contact your IR representative if you have specific design or use requirements or for further information. Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/2009 www.irf.com 7