IRF IRG6S330UPBF

PD - 96217A
PDP TRENCH IGBT
IRG6S330UPbF
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (E PULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
Key Parameters
VCE min
VCE(ON) typ. @ IC = 70A
IRP max @ TC= 25°C
TJ max
330
1.80
250
150
V
V
A
°C
C
G
G
E
D2Pak
E
IRG6S330UPbF
n-channel
G
Gate
C
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
Max.
Units
±30
V
A
VGE
IC @ TC = 25°C
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
IC @ TC = 100°C
IRP @ TC = 25°C
Continuous Collector, VGE @ 15V
70
40
Repetitive Peak Current
Power Dissipation
250
160
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
c
W
63
1.3
Power Dissipation
Linear Derating Factor
W/°C
-40 to + 150
Operating Junction and
Storage Temperature Range
°C
300
Soldering Temperature for 10 seconds
Thermal Resistance
Parameter
RθJC
www.irf.com
Junction-to-Case
d
Typ.
Max.
Units
–––
0.8
°C/W
1
09/11/09
IRG6S330UPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVCES
V(BR)ECS
∆ΒVCES/∆TJ
VCE(on)
Collector-to-Emitter Breakdown Voltage
Emitter-to-Collector Breakdown Voltage
Breakdown Voltage Temp. Coefficient
e
–––
–––
0.29
–––
–––
–––
–––
–––
1.25
1.43
–––
–––
–––
1.80
2.38
2.10
–––
2.10
–––
–––
5.0
––– mV/°C
VCE = 330V, VGE = 0V
20
VCE = 330V, VGE = 0V, TJ = 100°C
–––
µA
VCE = 330V, VGE = 0V, TJ = 125°C
200
VCE = 330V, VGE = 0V, TJ = 150°C
–––
Static Collector-to-Emitter Voltage
VGE(th)
Gate Threshold Voltage
∆VGE(th)/∆TJ
ICES
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
–––
–––
-12
2.0
–––
–––
10
40
Gate-to-Emitter Forward Leakage
–––
–––
150
–––
100
Gate-to-Emitter Reverse Leakage
Forward Transconductance
–––
–––
–––
94
-100
–––
Total Gate Charge
Gate-to-Collector Charge
–––
–––
86
36
–––
–––
Turn-On delay time
Rise time
–––
–––
39
32
–––
–––
Turn-Off delay time
Fall time
–––
–––
120
55
–––
–––
Turn-On delay time
Rise time
–––
–––
37
33
–––
–––
Turn-Off delay time
Fall time
–––
–––
159
95
–––
–––
Shoot Through Blocking Time
100
–––
–––
–––
943
–––
–––
1086
–––
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
75
–––
Internal Collector Inductance
–––
4.5
–––
gfe
Qg
Qgc
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
tst
EPULSE
ESD
Energy per Pulse
Human Body Model
Machine Model
Cies
Coes
Cres
LC
V VGE = 0V, ICE = 1 mA
V VGE = 0V, ICE = 1 A
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 25A
330
30
–––
–––
2.6
IGES
V
Internal Emitter Inductance
–––
e
e
e
= 120A e
VGE = 15V, ICE = 40A
VGE = 15V, ICE = 70A
VGE = 15V, ICE
VGE = 15V, ICE = 70A, TJ = 150°C
V
VCE = VGE, ICE = 500µA
nA
VGE = 30V
VGE = -30V
S
VCE = 25V, ICE = 25A
VCE = 200V, IC = 25A, VGE = 15V
nC
e
e
IC = 25A, VCC = 196V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 25°C
IC = 25A, VCC = 196V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
µJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
Class 2
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
VGE = 0V
2275 –––
108 –––
pF VCE = 30V
ƒ = 1.0MHz,
nH
LE
Conditions
Min. Typ. Max. Units
7.5
–––
See Fig.13
Between lead,
6mm (0.25in.)
from package
and center of die contact
Notes:
 Half sine wave with duty cycle = 0.05, ton=2µsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRG6S330UPbF
500
500
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
300
400
300
ICE (A)
ICE (A)
400
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
200
200
100
100
0
0
0
2
4
6
8
10
0
2
4
VCE (V)
10
Fig 2. Typical Output Characteristics @ 75°C
500
500
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
400
300
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
400
ICE (A)
ICE (A)
8
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
200
100
300
200
100
0
0
0
2
4
6
8
10
0
2
4
VCE (V)
500
8
10
Fig 4. Typical Output Characteristics @ 150°C
25
IC = 25A
T J = 25°C
400
6
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
20
TJ = 150°C
300
VCE (V)
ICE (A)
6
200
100
15
TJ = 25°C
TJ = 150°C
10
5
0
0
0
2
4
6
8
10
12
14
16
VGE (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
18
5
10
15
20
VGE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRG6S330UPbF
80
300
Repetitive Peak Current (A)
IC, Collector Current (A)
70
60
50
40
30
20
200
100
ton= 2µs
Duty cycle = 0.1
Half Sine Wave
10
0
0
0
25
50
75
100
125
25
150
T C, Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
75
100
125
150
Case Temperature (°C)
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1100
1100
V CC = 240V
L = 220nH
C = variable
1000
950
900
850
L = 220nH
C = 0.4µF
1000
100°C
Energy per Pulse (µJ)
1050
Energy per Pulse (µJ)
50
25°C
800
750
700
100°C
900
800
25°C
700
600
650
500
600
150 160 170 180 190 200 210 220 230
195 200 205 210 215 220 225 230 235 240
IC, Peak Collector Current (A)
VCC, Collector-to-Supply Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
1400
1000
V CC = 240V
C= 0.4µF
L = 220nH
t = 1µs half sine
1200
100
1000
C= 0.3µF
800
C= 0.2µF
10 µs
IC (A)
Energy per Pulse (µJ)
Fig 10. Typical EPULSE vs. Collector-to-Supply Voltage
100 µs
10
600
1ms
400
1
200
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
V CE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRG6S330UPbF
100000
VGE, Gate-to-Emitter Voltage (V)
C oes = C ce + Cgc
10000
Capacitance (pF)
16
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C res = C gc
Cies
1000
Coes
100
IC = 25A
14
12
V CES = 240V
V CES = 150V
10
V CES = 60V
8
6
4
2
Cres
0
10
0
50
100
150
0
200
20
VCE, Collector-toEmitter-Voltage(V)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
40
60
80
100
Q G, Total Gate Charge (nC)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
1
Thermal Response ( ZthJC )
D = 0.50
0.20
0.1
0.10
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
τC
τ1
τ2
τ2
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
τ3
τ3
τ
τι (sec)
0.084697 0.000038
0.374206 0.001255
0.341867 0.013676
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRG6S330UPbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
VCC
DUT
0
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRG6S330UPbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
)6
'$7(&2'(
<($5 :((.
/,1(/
$66(0%/<
/27&2'(
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
)6
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
7
IRG6S330UPbF
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/2009
8
www.irf.com