IRF IRG6I330UPBF

PD - 96192A
IRG6I330UPbF
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (E PULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
Key Parameters
VCE min
VCE(ON) typ. @ IC = 28A
IRP max @ TC= 25°C
TJ max
330
1.30
250
150
V
V
A
°C
C
E
C
G
G
TO-220AB
Full-Pak
E
n-channel
G
Gate
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
VGE
IC @ TC = 25°C
IC @ TC = 100°C
IRP @ TC = 25°C
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
Continuous Collector, VGE @ 15V
Repetitive Peak Current
Power Dissipation
Power Dissipation
Units
±30
28
V
A
15
250
c
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
Max.
43
17
W
0.34
-40 to + 150
W/°C
°C
x
300
x
10lb in (1.1N m)
N
Thermal Resistance
Parameter
RθJC
www.irf.com
Junction-to-Case
d
Typ.
Max.
Units
–––
2.9
°C/W
1
09/11/09
IRG6I330UPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVCES
V(BR)ECS
Collector-to-Emitter Breakdown Voltage
Emitter-to-Collector Breakdown Voltage
∆ΒVCES/∆TJ
Breakdown Voltage Temp. Coefficient
VCE(on)
Static Collector-to-Emitter Voltage
Conditions
Min. Typ. Max. Units
e
330
30
–––
–––
–––
–––
–––
–––
0.29
1.13
–––
–––
–––
1.30
1.43
1.55
–––
–––
–––
1.80
2.38
–––
–––
V
V
VGE = 0V, ICE = 1 mA
VGE = 0V, ICE = 1 A
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 15A
VGE = 15V, ICE = 28A
V
VGE = 15V, ICE
VGE = 15V, ICE
e
e
= 40A e
= 70A e
= 120A e
VGE = 15V, ICE
VGE = 15V, ICE = 70A, TJ = 150°C
e
VGE(th)
Gate Threshold Voltage
–––
2.6
2.10
–––
–––
5.0
∆VGE(th)/∆TJ
ICES
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
–––
–––
-12
2.0
–––
–––
10
40
Gate-to-Emitter Forward Leakage
–––
–––
150
–––
––– mV/°C
VCE = 330V, VGE = 0V
20
VCE = 330V, VGE = 0V, TJ = 100°C
–––
µA
VCE = 330V, VGE = 0V, TJ = 125°C
200
VCE = 330V, VGE = 0V, TJ = 150°C
–––
100
nA
Gate-to-Emitter Reverse Leakage
Forward Transconductance
–––
–––
–––
94
-100
–––
VGE = 30V
VGE = -30V
S
Total Gate Charge
Gate-to-Collector Charge
–––
–––
86
36
–––
–––
VCE = 25V, ICE = 25A
VCE = 200V, IC = 25A, VGE = 15V
Turn-On delay time
Rise time
–––
–––
39
32
–––
–––
Turn-Off delay time
Fall time
–––
–––
120
55
–––
–––
Turn-On delay time
Rise time
–––
–––
37
33
–––
–––
Turn-Off delay time
Fall time
–––
–––
159
95
–––
–––
Shoot Through Blocking Time
100
–––
–––
–––
943
–––
–––
1086
–––
75
–––
4.5
–––
IGES
gfe
Qg
Qgc
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
tst
EPULSE
ESD
Energy per Pulse
Human Body Model
Machine Model
Cies
Coes
Cres
LC
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
Internal Collector Inductance
–––
V
nC
Internal Emitter Inductance
–––
e
IC = 25A, VCC = 196V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 25°C
IC = 25A, VCC = 196V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
µJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
Class 2
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
VGE = 0V
2275 –––
108 –––
pF VCE = 30V
ƒ = 1.0MHz,
nH
LE
VCE = VGE, ICE = 500µA
7.5
–––
See Fig.13
Between lead,
6mm (0.25in.)
from package
and center of die contact
Notes:
 Half sine wave with duty cycle = 0.05, ton=2µsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRG6I330UPbF
500
500
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
300
400
300
ICE (A)
ICE (A)
400
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
200
200
100
100
0
0
0
2
4
6
8
10
0
2
4
VCE (V)
10
Fig 2. Typical Output Characteristics @ 75°C
500
500
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
400
300
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
400
ICE (A)
ICE (A)
8
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
200
100
300
200
100
0
0
0
2
4
6
8
10
0
2
4
VCE (V)
500
8
10
Fig 4. Typical Output Characteristics @ 150°C
25
IC = 25A
T J = 25°C
400
6
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
20
TJ = 150°C
300
VCE (V)
ICE (A)
6
200
100
15
TJ = 25°C
TJ = 150°C
10
5
0
0
0
2
4
6
8
10
12
14
16
VGE (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
18
5
10
15
20
VGE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRG6I330UPbF
30
260
ton= 2µs
Duty cycle <= 0.05
Half Sine Wave
240
25
Repetitive Peak Current (A)
220
IC (A)
20
15
10
5
200
180
160
140
120
100
80
60
40
20
0
0
25
50
75
100
125
0
150
25
T C (°C)
75
100
125
150
Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1100
1100
V CC = 240V
L = 220nH
C = variable
1000
950
900
850
L = 220nH
C = 0.4µF
1000
100°C
Energy per Pulse (µJ)
1050
Energy per Pulse (µJ)
50
25°C
800
750
700
100°C
900
800
25°C
700
600
650
600
500
150 160 170 180 190 200 210 220 230
195 200 205 210 215 220 225 230 235 240
IC, Peak Collector Current (A)
VCC, Collector-to-Supply Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
Fig 10. Typical EPULSE vs. Collector-to-Supply Voltage
1400
1000
V CC = 240V
100
10µsec
1000
100µsec
C= 0.3µF
800
C= 0.2µF
IC (A)
Energy per Pulse (µJ)
C= 0.4µF
L = 220nH
t = 1µs half sine
1200
1msec
10
600
1
400
Tc = 25°C
Tj = 150°C
Single Pulse
200
0.1
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRG6I330UPbF
100000
VGE, Gate-to-Emitter Voltage (V)
C oes = C ce + Cgc
10000
Capacitance (pF)
16
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C res = C gc
Cies
1000
Coes
100
IC = 25A
14
12
V CES = 240V
V CES = 150V
10
V CES = 60V
8
6
4
2
Cres
0
10
0
50
100
150
0
200
20
40
60
80
100
Q G, Total Gate Charge (nC)
VCE, Collector-toEmitter-Voltage(V)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
τJ
0.01
0.01
0.001
1E-006
0.0001
τJ
τ1
R2
R2
R3
R3
R4
R4
τC
τ
τ2
τ1
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
R1
R1
Ri (°C/W)
τi (sec)
0.11889
0.000045
0.35666
0.001841
1.09829
0.128114
1.32616
2.452
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRG6I330UPbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
DUT
0
VCC
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRG6I330UPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
(;$03/( 7+,6,6$1,5),*
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5),*
.
'$7(&2'(
<($5 :((.
/,1(.
TO-220AB Full-Pak package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
Data and specifications subject to change without notice.
limitation, we have not qualified our product for medical use or
This product has been designed for the Industrial market.
applications involving hi-reliability applications. Customers are
Qualification Standards can be found on IR’s Web site.
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational performance
or safety. Please contact your IR representative if you have
specific design or use requirements or for further information.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/2009
www.irf.com
7