IRF IRG7I313UPBF

PD - 97411
IRG7I313UPbF
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
Key Parameters
VCE min
VCE(ON) typ. @ IC = 20A
IRP max @ TC= 25°C
TJ max
330
1.35
160
150
V
V
A
°C
C
G
G
E
TO-220 Full-Pak
IRG7I313UPbF
E
n-channel
G
G ate
C
C
C olle ctor
E
Em itter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Max.
Units
±30
V
Continuous Collector, VGE @ 15V
20
10
A
Repetitive Peak Current
Power Dissipation
160
34
W
14
0.27
W/°C
Parameter
VGE
IC @ TC = 25°C
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
IC @ TC = 100°C
IRP @ TC = 25°C
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
c
Power Dissipation
Linear Derating Factor
-40 to + 150
Operating Junction and
Storage Temperature Range
°C
300
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
d
Junction-to-Case
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
0.50
3.7
—
65
2.0
—
—
Units
°C/W
g
1
08/05/09
IRG7I313UPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltage
330
–––
–––
∆ΒVCES/∆TJ
Breakdown Voltage Temp. Coefficient
–––
–––
0.4
1.21
–––
1.45
–––
1.35
–––
–––
1.75
2.14
–––
–––
1.41
–––
–––
4.7
VCE(on)
Static Collector-to-Emitter Voltage
V
V
VGE(th)
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
–––
-10
––– mV/°C
Collector-to-Emitter Leakage Current
–––
1.0
25
10
150
–––
75
–––
Gate-to-Emitter Forward Leakage
Gate-to-Emitter Reverse Leakage
–––
–––
–––
–––
Forward Transconductance
–––
Total Gate Charge
Gate-to-Collector Charge
–––
–––
Qgc
td(on)
tr
td(off)
tf
100
-100
nA
47
–––
S
33
12
–––
–––
nC
Turn-On delay time
–––
11
–––
Rise time
Turn-Off delay time
–––
–––
13
75
–––
–––
–––
68
–––
11
14
–––
–––
Turn-Off delay time
–––
86
–––
tst
Fall time
Shoot Through Blocking Time
–––
100
190
–––
–––
–––
EPULSE
Energy per Pulse
–––
480
–––
–––
570
–––
26
–––
4.5
–––
Human Body Model
ESD
Machine Model
Cies
Input Capacitance
–––
Coes
Output Capacitance
Reverse Transfer Capacitance
–––
–––
Internal Collector Inductance
–––
Cres
LC
VCE = 330V, VGE = 0V
VCE = 330V, VGE = 0V, TJ = 125°C
–––
–––
tf
VGE = -30V
Internal Emitter Inductance
–––
VCE = 25V, ICE = 12A
VCE = 240V, IC = 12A, VGE = 15V
e
IC = 12A, VCC = 196V
ns
RG = 10Ω, L=210µH
TJ = 25°C
IC = 12A, VCC = 196V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.20µF, VGE = 15V
µJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.20µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
Class 1C
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
VGE = 0V
880 –––
47
–––
pF VCE = 30V
ƒ = 1.0MHz
Between lead,
nH
LE
VCE = VGE, ICE = 1.0mA
VCE = 330V, VGE = 0V, TJ = 150°C
VGE = 30V
Turn-On delay time
Rise time
tr
td(off)
V
e
µA
Fall time
td(on)
VGE = 15V, ICE
e
e
= 40A e
= 60A e
VGE = 15V, ICE
VGE = 15V, ICE = 20A, TJ = 150°C
∆VGE(th)/∆TJ
ICES
gfe
Qg
VGE = 0V, ICE = 250µA
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 12A
VGE = 15V, ICE = 20A
–––
2.2
IGES
Conditions
Min. Typ. Max. Units
BVCES
7.5
–––
6mm (0.25in.)
from package
and center of die contact
Notes:
 Half sine wave with duty cycle = 0.05, ton=2µsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRG7I313UPbF
200
200
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
160
VGE = 8.0V
VGE = 6.0V
120
ICE (A)
ICE (A)
160
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
80
VGE = 8.0V
VGE = 6.0V
120
80
40
40
0
0
0
2
4
6
8
10
0
2
4
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
160
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
ICE (A)
ICE (A)
10
200
VGE = 18V
VGE = 15V
120
8
Fig 2. Typical Output Characteristics @ 75°C
200
160
6
VCE (V)
80
VGE = 8.0V
VGE = 6.0V
120
40
80
40
0
0
0
2
4
6
8
10
0
2
4
VCE (V)
6
8
10
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
200
14
IC = 12A
12
160
120
VCE (V)
ICE (A)
10
T J = 25°C
T J = 150°C
80
TJ = 25°C
TJ = 150°C
8
6
4
40
2
0
0
2
4
6
8
10
12
14
V GE (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
16
0
5
10
15
20
V GE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRG7I313UPbF
20
160
ton= 2µs
Duty cycle = 0.05
Half Sine Wave
Repetitive Peak Current (A)
140
IC (A)
15
10
5
120
100
80
60
40
20
0
0
25
50
75
100
125
150
25
75
100
125
150
Case Temperature (°C)
T C (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1300
1300
VCC = 240V
1100
L = 220nH
C = 0.4µF
1200
L = 220nH
C = variable
100°C
Energy per Pulse (µJ)
1200
Energy per Pulse (µJ)
50
1000
900
25°C
800
700
1100
100°C
1000
25°C
900
800
600
700
500
400
600
160
170
180
190
200
210
220
230
195 200 205 210 215 220 225 230 235 240
IC, Peak Collector Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
100
1600
VCC = 240V
10µsec
100µsec
10
1200
1000
IC (A)
Energy per Pulse (µJ)
C= 0.4µF
L = 220nH
t = 1µs half sine
1400
C= 0.3µF
1
800
C= 0.2µF
600
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
400
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
1msec
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRG7I313UPbF
20
VGE, Gate-to-Source Voltage (V)
Capacitance (pF)
10000
Cies
1000
100
Coes
VDS = 240V
VDS = 150V
16
VDS = 60V
12
8
4
Cres
0
10
0
ID= 12A
100
0
200
10
20
30
40
QG Total Gate Charge (nC)
VCE (V)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
R1
R1
0.05
0.1
0.01
0.001
1E-006
τJ
0.02
0.01
τJ
τ1
R2
R2
R3
R3
τC
τ
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
Ri (°C/W)
R4
R4
τ4
τ4
τi (sec)
0.0433
0.000006
1.3307
0.000170
1.5908
0.001311
0.7282
0.006923
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRG7I313UPbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
PULSE B
Ipulse
RG
DUT
tST
Fig 16a. tst and EPULSE Test Circuit
VCE
Fig 16b. tst Test Waveforms
Energy
L
IC Current
DUT
0
VCC
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRG7I313UPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
(;$03/( 7+,6,6$1,5),*
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5),*
.
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(.
TO-220 Full-Pak package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/2009
www.irf.com
7