PD - 97411 IRG7I313UPbF PDP TRENCH IGBT Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package Key Parameters VCE min VCE(ON) typ. @ IC = 20A IRP max @ TC= 25°C TJ max 330 1.35 160 150 V V A °C C G G E TO-220 Full-Pak IRG7I313UPbF E n-channel G G ate C C C olle ctor E Em itter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Max. Units ±30 V Continuous Collector, VGE @ 15V 20 10 A Repetitive Peak Current Power Dissipation 160 34 W 14 0.27 W/°C Parameter VGE IC @ TC = 25°C Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG c Power Dissipation Linear Derating Factor -40 to + 150 Operating Junction and Storage Temperature Range °C 300 Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com d Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– 0.50 3.7 — 65 2.0 — — Units °C/W g 1 08/05/09 IRG7I313UPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Collector-to-Emitter Breakdown Voltage 330 ––– ––– ∆ΒVCES/∆TJ Breakdown Voltage Temp. Coefficient ––– ––– 0.4 1.21 ––– 1.45 ––– 1.35 ––– ––– 1.75 2.14 ––– ––– 1.41 ––– ––– 4.7 VCE(on) Static Collector-to-Emitter Voltage V V VGE(th) Gate Threshold Voltage Gate Threshold Voltage Coefficient ––– -10 ––– mV/°C Collector-to-Emitter Leakage Current ––– 1.0 25 10 150 ––– 75 ––– Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage ––– ––– ––– ––– Forward Transconductance ––– Total Gate Charge Gate-to-Collector Charge ––– ––– Qgc td(on) tr td(off) tf 100 -100 nA 47 ––– S 33 12 ––– ––– nC Turn-On delay time ––– 11 ––– Rise time Turn-Off delay time ––– ––– 13 75 ––– ––– ––– 68 ––– 11 14 ––– ––– Turn-Off delay time ––– 86 ––– tst Fall time Shoot Through Blocking Time ––– 100 190 ––– ––– ––– EPULSE Energy per Pulse ––– 480 ––– ––– 570 ––– 26 ––– 4.5 ––– Human Body Model ESD Machine Model Cies Input Capacitance ––– Coes Output Capacitance Reverse Transfer Capacitance ––– ––– Internal Collector Inductance ––– Cres LC VCE = 330V, VGE = 0V VCE = 330V, VGE = 0V, TJ = 125°C ––– ––– tf VGE = -30V Internal Emitter Inductance ––– VCE = 25V, ICE = 12A VCE = 240V, IC = 12A, VGE = 15V e IC = 12A, VCC = 196V ns RG = 10Ω, L=210µH TJ = 25°C IC = 12A, VCC = 196V ns RG = 10Ω, L=200µH, LS= 150nH TJ = 150°C ns VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.20µF, VGE = 15V µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.20µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C Class 1C (Per JEDEC standard JESD22-A114) Class B (Per EIA/JEDEC standard EIA/JESD22-A115) VGE = 0V 880 ––– 47 ––– pF VCE = 30V ƒ = 1.0MHz Between lead, nH LE VCE = VGE, ICE = 1.0mA VCE = 330V, VGE = 0V, TJ = 150°C VGE = 30V Turn-On delay time Rise time tr td(off) V e µA Fall time td(on) VGE = 15V, ICE e e = 40A e = 60A e VGE = 15V, ICE VGE = 15V, ICE = 20A, TJ = 150°C ∆VGE(th)/∆TJ ICES gfe Qg VGE = 0V, ICE = 250µA V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 12A VGE = 15V, ICE = 20A ––– 2.2 IGES Conditions Min. Typ. Max. Units BVCES 7.5 ––– 6mm (0.25in.) from package and center of die contact Notes: Half sine wave with duty cycle = 0.05, ton=2µsec. Rθ is measured at TJ of approximately 90°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRG7I313UPbF 200 200 VGE = 18V VGE = 15V VGE = 12V VGE = 10V 160 VGE = 8.0V VGE = 6.0V 120 ICE (A) ICE (A) 160 VGE = 18V VGE = 15V VGE = 12V VGE = 10V 80 VGE = 8.0V VGE = 6.0V 120 80 40 40 0 0 0 2 4 6 8 10 0 2 4 VCE (V) Fig 1. Typical Output Characteristics @ 25°C VGE = 18V VGE = 15V VGE = 12V VGE = 10V 160 VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V ICE (A) ICE (A) 10 200 VGE = 18V VGE = 15V 120 8 Fig 2. Typical Output Characteristics @ 75°C 200 160 6 VCE (V) 80 VGE = 8.0V VGE = 6.0V 120 40 80 40 0 0 0 2 4 6 8 10 0 2 4 VCE (V) 6 8 10 VCE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 200 14 IC = 12A 12 160 120 VCE (V) ICE (A) 10 T J = 25°C T J = 150°C 80 TJ = 25°C TJ = 150°C 8 6 4 40 2 0 0 2 4 6 8 10 12 14 V GE (V) Fig 5. Typical Transfer Characteristics www.irf.com 16 0 5 10 15 20 V GE (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRG7I313UPbF 20 160 ton= 2µs Duty cycle = 0.05 Half Sine Wave Repetitive Peak Current (A) 140 IC (A) 15 10 5 120 100 80 60 40 20 0 0 25 50 75 100 125 150 25 75 100 125 150 Case Temperature (°C) T C (°C) Fig 7. Maximum Collector Current vs. Case Temperature Fig 8. Typical Repetitive Peak Current vs. Case Temperature 1300 1300 VCC = 240V 1100 L = 220nH C = 0.4µF 1200 L = 220nH C = variable 100°C Energy per Pulse (µJ) 1200 Energy per Pulse (µJ) 50 1000 900 25°C 800 700 1100 100°C 1000 25°C 900 800 600 700 500 400 600 160 170 180 190 200 210 220 230 195 200 205 210 215 220 225 230 235 240 IC, Peak Collector Current (A) VCE, Collector-to-Emitter Voltage (V) Fig 9. Typical EPULSE vs. Collector Current Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 100 1600 VCC = 240V 10µsec 100µsec 10 1200 1000 IC (A) Energy per Pulse (µJ) C= 0.4µF L = 220nH t = 1µs half sine 1400 C= 0.3µF 1 800 C= 0.2µF 600 Tc = 25°C Tj = 150°C Single Pulse 0.1 400 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 1msec 150 1 10 100 1000 VCE (V) Fig 12. Forrward Bias Safe Operating Area www.irf.com IRG7I313UPbF 20 VGE, Gate-to-Source Voltage (V) Capacitance (pF) 10000 Cies 1000 100 Coes VDS = 240V VDS = 150V 16 VDS = 60V 12 8 4 Cres 0 10 0 ID= 12A 100 0 200 10 20 30 40 QG Total Gate Charge (nC) VCE (V) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 R1 R1 0.05 0.1 0.01 0.001 1E-006 τJ 0.02 0.01 τJ τ1 R2 R2 R3 R3 τC τ τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 Ri (°C/W) R4 R4 τ4 τ4 τi (sec) 0.0433 0.000006 1.3307 0.000170 1.5908 0.001311 0.7282 0.006923 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRG7I313UPbF A RG C DRIVER PULSE A L VCC B PULSE B Ipulse RG DUT tST Fig 16a. tst and EPULSE Test Circuit VCE Fig 16b. tst Test Waveforms Energy L IC Current DUT 0 VCC 1K Fig 16c. EPULSE Test Waveforms 6 Fig. 17 - Gate Charge Circuit (turn-off) www.irf.com IRG7I313UPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information (;$03/( 7+,6,6$1,5),* :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(. 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5),* . $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(. TO-220 Full-Pak package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/2009 www.irf.com 7