IRF IRG4IBC30UD

PD91753A
IRG4IBC30UD
UltraFast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• 2.5kV, 60s insulation voltage U
• 4.8 mm creapage distance to heatsink
• UltraFast: Optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
• IGBT co-packaged with HEXFREDTM ultrafast,
ultrasoft recovery antiparallel diodes
• Tighter parameter distribution
• Industry standard Isolated TO-220 FullpakTM
outline
VCES = 600V
VCE(on) typ. = 1.95V
G
@VGE = 15V, IC = 12A
E
n-cha nn el
Benefits
• Simplified assembly
• Highest efficiency and power density
• HEXFREDTM antiparallel Diode minimizes
switching losses and EMI
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
Visol
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector CurrentQ
Clamped Inductive Load Current R
Diode Continuous Forward Current
Diode Maximum Forward Current
RMS Isolation Voltage, Terminal to CaseU
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
17
8.9
92
92
8.5
92
2500
± 20
45
18
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
–––
–––
2.0 (0.07)
2.8
4.1
65
–––
Units
°C/W
g (oz)
1
7/17/2000
IRG4IBC30UD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltageƒ
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
VCE(on)
Collector-to-Emitter Saturation Voltage
V(BR)CES
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Min.
600
–––
–––
–––
–––
Gate Threshold Voltage
3.0
Temperature Coeff. of Threshold Voltage –––
Forward TransconductanceT
3.1
Zero Gate Voltage Collector Current
–––
–––
Diode Forward Voltage Drop
–––
–––
Gate-to-Emitter Leakage Current
–––
Typ.
–––
0.63
1.95
2.52
2.09
–––
-11
8.6
–––
–––
1.4
1.3
–––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250µA
––– V/°C VGE = 0V, IC = 1.0mA
2.1
IC = 12A
VGE = 15V
–––
V
IC = 23A
See Fig. 2, 5
–––
IC = 12A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 250µA
–––
S
VCE = 100V, IC = 12A
250
µA
VGE = 0V, VCE = 600V
2500
VGE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 12A
See Fig. 13
1.6
IC = 12A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M /dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
50
8.1
18
40
21
91
80
0.38
0.16
0.54
40
22
120
180
0.89
7.5
1100
73
14
42
80
3.5
5.6
80
220
180
120
Max. Units
Conditions
75
IC = 12A
12
nC
VCC = 400V
See Fig. 8
27
VGE = 15V
–––
TJ = 25°C
–––
ns
IC = 12A, VCC = 480V
140
VGE = 15V, RG = 23Ω
130
Energy losses include "tail" and
–––
diode reverse recovery.
–––
mJ See Fig. 9, 10, 11, 18
0.9
–––
TJ = 150°C, See Fig. 9, 10, 11, 18
–––
ns
IC = 12A, VCC = 480V
–––
VGE = 15V, RG = 23Ω
–––
Energy losses include "tail" and
–––
mJ diode reverse recovery.
–––
nH
Measured 5mm from package
–––
VGE = 0V
–––
pF
VCC = 30V
See Fig. 7
–––
ƒ = 1.0MHz
60
ns
TJ = 25°C See Fig.
120
TJ = 125°C
14
IF = 12A
6.0
A
TJ = 25°C See Fig.
10
TJ = 125°C
15
VR = 200V
180
nC
TJ = 25°C See Fig.
600
TJ = 125°C
16
di/dt 200A/µs
––– A/µs TJ = 25°C See Fig.
–––
TJ = 125°C
17
www.irf.com
IRG4IBC30UD
12
F o r b o th :
D u ty c y c le : 5 0 %
TJ = 1 2 5 ° C
T sink = 9 0 ° C
G a te d riv e a s s p e c ifie d
LOAD CURRENT (A)
10
P o w e r D is s ip a tio n = 13 W
8
S q u a re w a v e :
6 0% of rate d
volta ge
6
I
4
Id e a l d io d e s
2
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
I C , C o lle cto r-to -E m itte r C u rre n t (A )
I C , C olle cto r-to -E m itte r C u rre n t (A )
100
TJ = 2 5 ° C
T J = 1 5 0 °C
10
1
VG E = 1 5 V
2 0 µ s P U L S E W ID T H A
0.1
0.1
1
V C E , C o lle cto r-to -E m itte r V o lta g e (V )
Fig. 2 - Typical Output Characteristics
www.irf.com
10
T J = 1 5 0 °C
10
T J = 2 5 °C
1
V CC = 10V
5 µ s P U L S E W ID T H
0.1
5
6
7
8
9
10
11
A
12
VG E , G a te -to -E m itte r V o lta g e (V )
Fig. 3 - Typical Transfer Characteristics
3
IRG4IBC30UD
3.0
V C E , C ollector-to-Em itter Volta ge (V)
Maximum DC Collector Current(A)
20
16
12
8
4
0
25
50
75
100
125
VGE = 15V
8 0 µ s P U L S E W ID T H
IC = 2 4 A
2.5
IC = 1 2 A
2.0
I C = 6 .0 A
A
1.5
150
-60
TC , Case Temperature ( ° C)
-40
-20
0
20
40
60
80
100 120 140 160
T J , Ju n c tio n T e m p e ra tu re (°C )
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
P DM
0.02
0.01
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.01
0.00001
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC30UD
V GE =
C ie s =
C re s =
C oes =
1600
20
0V ,
f = 1MHz
C g e + C g c , C ce S H O R TE D
C gc
C ce + C g c
V G E , G a te -to -E m itte r V o lta g e (V )
C, C apa cita nc e (pF )
2000
C ie s
1200
800
C oes
400
C re s
A
0
1
10
VCE = 400V
IC = 12A
16
12
8
4
A
0
0
100
10
V C E , C o lle c to r-to -E m itte r V o lta g e (V )
10
Total Switchig Losses (mJ)
Total Switchig Losses (mJ)
0.56
0.54
0.52
A
0.50
0
10
20
30
40
50
R G , Gate Resistance ( Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
40
50
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V C C = 480V
V G E = 15V
T J = 25°C
I C = 12A
0.58
30
Q g , T o ta l G a te C h a rg e (n C )
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0.60
20
60
R G = 23Ω
V G E = 15V
V C C = 480V
I C = 24A
I C = 12A
1
I C = 6.0A
A
0.1
-60
-40
-20
0
20
40
60
80
100
120 140
160
TJ , Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4IBC30UD
1.6
1000
= 23 Ω
= 150°C
= 480V
= 15V
I C , Collector Current (A)
RG
TJ
V CC
V GE
VGE = 20V
T J = 125 oC
100
1.2
0.8
10
1
0.4
SAFE OPERATING AREA
A
0.0
0
10
20
0.1
1
30
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
I C , Collector-to-Emitter Current (A )
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
Instan tan eou s Fo rwa rd C urre nt - I F (A )
Total Switchig Losses (mJ)
2.0
TJ = 15 0°C
TJ = 12 5°C
10
TJ = 2 5°C
1
0.4
0.8
1.2
1.6
2.0
2.4
Fo rwa rd V oltage D rop - V FM (V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4IBC30UD
100
160
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
120
I IR R M - (A )
t rr - (ns)
I F = 24 A
I F = 1 2A
80
I F = 6 .0 A
I F = 2 4A
I F = 1 2A
10
I F = 6 .0A
40
0
100
d i f /d t - (A /µ s)
1
100
1000
1000
di f /dt - (A /µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
600
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
d i(re c )M /d t - (A /µ s)
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
Q R R - (n C )
400
I F = 2 4A
I F = 1 2A
200
1000
IF = 6.0 A
I F = 12 A
100
I F = 2 4A
I F = 6.0 A
0
100
d i f /d t - (A /µ s)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
10
100
1000
d i f /d t - (A /µ s)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4IBC30UD
Same ty pe
device as
D .U.T.
90%
10%
Vge
430µF
80%
of Vce
VC
D .U .T.
90%
td(off)
10%
IC 5%
tf
tr
t d(on)
t=5µs
Eon
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Eoff
E ts = (Eon +Eoff )
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
trr
id d t
tx
∫
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2
E o n = V ce ie d t
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
t4
V d id d t
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4IBC30UD
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L
1000V
D.U.T.
Vc*
RL=
480V
4 X IC @25°C
0 - 480V
50V
6000µ F
100 V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4IBC30UD
Notes:
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
R VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (figure 19)
SPulse width ≤ 80µs; duty factor ≤ 0.1%.
T Pulse width 5.0µs, single shot.
U t = 60s, f = 60Hz
Case Outline — TO-220 FULLPAK
1 0 .6 0 (.4 1 7 )
1 0 .4 0 (.4 0 9 )
ø
3 .4 0 (.1 3 3 )
3 .1 0 (.1 2 3 )
4 .8 0 (.1 8 9 )
4 .6 0 (.1 8 1 )
-A 3 .7 0 (.1 4 5 )
3 .2 0 (.1 2 6 )
1 6 .0 0 (.6 3 0 )
1 5 .8 0 (.6 2 2 )
2 .8 0 (.1 1 0 )
2 .6 0 (.1 0 2 )
L E A D A S S IG N M E N T S
LEAD ASSIGMENTS
1 - GA TE
1- GATE
2 - D R A IN
2- COLLECTOR
3 - SOURCE
3- EMITTER
7 .1 0 (.2 8 0 )
6 .7 0 (.2 6 3 )
1 .1 5 (.0 4 5)
M IN .
NOTES :
1 D IM E N S IO N IN G & T O L E R A N C IN G
P E R A N S I Y 1 4.5 M , 1 9 8 2
1
2
3
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 .3 0 (.1 3 0 )
3 .1 0 (.1 2 2 )
-B -
1 3 .7 0 (.5 4 0 )
1 3 .5 0 (.5 3 0 )
C
A
1 .4 0 (.0 5 5 )
3X
1 .0 5 (.0 4 2 )
0 .9 0 (.0 35 )
3 X 0 .7 0 (.0 28 )
0 .2 5 (.0 1 0 )
2 .5 4 (.1 0 0 )
2X
3X
M
A M
B
0 .4 8 (.0 1 9 )
0 .4 4 (.0 1 7 )
2 .8 5 (.1 1 2 )
2 .6 5 (.1 0 4 )
D
B
M IN IM U M C R E E P A G E
D IS T A N C E B E T W E E N
A -B -C -D = 4 .8 0 (.1 89 )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 7/00
10
www.irf.com