DIGITAL AUDIO MOSFET PD - 97282 IRF6785MTRPbF Key Parameters 200 Features VDS • Latest MOSFET Silicon technology • Key parameters optimized for Class-D audio amplifier RDS(on) typ. @ applications Qg typ. • Low RDS(on) for improved efficiency • Low Qg for better THD and improved efficiency RG(int) max • Low Qrr for better THD and lower EMI • Low package stray inductance for reduced ringing and lower EMI • Can deliver up to 250W per channel into 8Ω Load in Half-Bridge Configuration Amplifier • Dual sided cooling compatible · Compatible with existing surface mount technologies · RoHS compliant containing no lead or bromide MZ ·Lead-Free (Qualified up to 260°C Reflow) Applicable DirectFET Outline and Substrate Outline (see p. 6, 7 for details) SQ SX ST SH MQ MX MT MN VGS = 10V 85 26 V m: nC 3.0 DirectFET ISOMETRIC MZ Description This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD, and EMI. The IRF6785MPbF device utilizes DirectFETTM packaging technology. DirectFETTM packaging technology offers lower parasitic inductance and resistance when compared to conventional wirebonded SOIC packaging. Lower inductance improves EMI performance by reducing the voltage ringing that accompanies fast current transients. The DirectFETTM package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and processes. The DirectFETTM package also allows dual sided cooling to maximize thermal transfer in power systems, improving thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable device for Class-D audio amplifier applications. Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage Parameter 200 V VGS Gate-to-Source Voltage ± 20 ID @ TC = 25°C ID @ TA = 25°C Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V 19 3.4 ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 2.7 IDM Pulsed Drain Current 27 c Maximum Power Dissipation 57 PD @TA = 25°C Power Dissipation 2.8 PD @TA = 70°C EAS Single Pulse Avalanche Energy PD @TC = 25°C e Power Dissipation e c IAR Avalanche Current TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range A W 1.8 d 33 mJ 8.4 A 0.022 -40 to + 150 W/°C °C Thermal Resistance Parameter ek hk Junction-to-Ambient ik Junction-to-Case jk Typ. Max. Units °C/W RθJA Junction-to-Ambient ––– 45 RθJA Junction-to-Ambient 12.5 ––– 20 ––– RθJA RθJC RθJ-PCB Junction-to-PCB Mounted Notes through are on page 2 www.irf.com ––– 1.4 1.4 ––– 1 04/18/07 IRF6785MTRPbF Static @ TJ = 25°C (unless otherwise specified) Parameter Conditions Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage 200 ––– ––– V ∆V(BR)DSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 0.22 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– 85 100 VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 mΩ V VDS = VGS, ID = 100µA IDSS Drain-to-Source Leakage Current ––– ––– 20 µA IGSS RG(int) Gate-to-Source Forward Leakage ––– ––– 250 ––– ––– 100 VGS = 0V, ID = 250µA VGS = 10V, ID = 4.2A f VDS = 200V, VGS = 0V VDS = 160V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– ––– 3.0 Ω Dynamic @ TJ = 25°C (unless otherwise specified) Parameter gfs Qg Min. Typ. Max. Units Forward Transconductance 8.9 ––– ––– S Conditions VDS = 10V, ID = 4.2A Total Gate Charge ––– 26 36 VDS = 100V Qgs1 Pre-Vth Gate-to-Source Charge ––– 6.3 ––– VGS = 10V Qgs2 Post-Vth Gate-to-Source Charge ––– 1.3 ––– Qgd Gate-to-Drain Charge ––– 6.9 ––– Qgodr ––– 11.5 ––– Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 8.2 ––– td(on) Turn-On Delay Time ––– 6.2 ––– VDD = 100V tr Rise Time ––– 8.6 ––– ID = 4.2A td(off) Turn-Off Delay Time ––– 7.2 ––– tf Fall Time ––– 14 ––– RG = 6.0Ω VGS = 10V Ciss Input Capacitance ––– 1500 ––– VGS = 0V Coss Output Capacitance ––– 160 ––– Crss Reverse Transfer Capacitance ––– 31 ––– Coss Output Capacitance ––– 1140 ––– ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 69 ––– VGS = 0V, VDS = 160V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 140 ––– VGS = 0V, VDS = 0V to 160V Min. Typ. Max. ––– ––– 19 ID = 4.2A nC ns See Fig. 6 and 17 f VDS = 25V pF g Diode Characteristics Parameter Continuous Source Current IS (Body Diode) ISM Pulsed Source Current c Units A ––– ––– G p-n junction diode. VSD Diode Forward Voltage ––– trr Reverse Recovery Time ––– 71 Qrr Reverse Recovery Charge ––– 190 2 D showing the integral reverse 27 (Body Diode) Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.94mH, RG = 25Ω, IAS = 8.4A. Surface mounted on 1 in. square Cu board. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Conditions MOSFET symbol ––– S V TJ = 25°C, IS = 4.2A, VGS = 0V ––– ns ––– nC TJ = 25°C, IF = 4.2A, VDD = 25V di/dt = 100A/µs 1.3 f f Used double sided cooling , mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. www.irf.com IRF6785MTRPbF 100 100 10 BOTTOM VGS 15V 10V 9.0V 8.0V 7.0V 6.5V 6.0V 5.5V VGS 15V 10V 9.0V 8.0V 7.0V 6.5V 6.0V 5.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 5.5V 1 10 BOTTOM 5.5V 1 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 0.1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 100 2.5 VDS = 25V ≤60µs PULSE WIDTH 10 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics T J = -40°C T J = 25°C T J = 150°C 1 0.1 ID = 4.2A VGS = 10V 2.0 1.5 1.0 0.5 3 4 5 6 7 8 12.0 VGS = 0V, f = 1 MHZ Ciss = C gs + C gd, C ds SHORTED ID= 4.2A VGS, Gate-to-Source Voltage (V) Crss = C gd Coss = Cds + C gd 10000 Ciss 1000 Coss 100 20 40 60 80 100 120 140 160 Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Crss 10 10.0 VDS= 160V VDS= 100V 8.0 VDS= 40V 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) 1000 Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 5 10 15 20 25 30 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRF6785MTRPbF 100 T J = -40°C T J = 25°C T J = 150°C 10 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 10 10msec 1msec 1 DC T A = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 0 1.2 1 10 100 1000 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 5.0 VGS(th) , Gate Threshold Voltage (V) 20 ID, Drain Current (A) 0.1 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 15 10 5 0 4.5 4.0 ID = 100µA 3.5 ID = 250µA 3.0 2.5 25 50 75 100 125 150 -75 -50 -25 T C , Case Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJA ) °C/W 100 D = 0.50 10 0.20 0.10 0.05 0.02 0.01 1 τJ 0.1 R1 R1 τJ τ1 R2 R2 R3 R3 τA τ1 τ2 τ2 τ3 τ3 τ4 τA τ4 Ci= τi/Ri Ci= τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.01 0.001 1E-006 1E-005 0.0001 τi (sec) Ri (°C/W) R4 R4 1.2801 0.000322 8.7256 0.164798 21.75 2.2576 13.2511 69 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + T A 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 www.irf.com RDS(on), Drain-to -Source On Resistance ( mΩ) RDS(on), Drain-to -Source On Resistance (m Ω) IRF6785MTRPbF 500 ID = 4.2A 400 300 200 T J = 125°C 100 T J = 25°C 0 4 6 8 10 12 14 200 175 T J = 125°C 150 125 T J = 25°C 100 75 Vgs = 10V 50 0 16 5 VGS, Gate -to -Source Voltage (V) + V - DD IAS VGS 20V A 0.01Ω tp Fig 15a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) DRIVER D.U.T RG 20 150 15V L 15 Fig 13. On-Resistance vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage VDS 10 ID, Drain Current (A) ID TOP 0.85A 1.04A BOTTOM 8.4A 125 100 75 50 25 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current I AS Fig 15b. Unclamped Inductive Waveforms VDS VGS RD VDS 90% D.U.T. RG + - VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 16a. Switching Time Test Circuit www.irf.com 10% VGS td(on) tr td(off) tf Fig 16b. Switching Time Waveforms 5 IRF6785MTRPbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 17b. Gate Charge Waveform Fig 17a. Gate Charge Test Circuit Driver Gate Drive D.U.T + RG * • • • • D.U.T. ISD Waveform + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test ** P.W. Period *** Reverse Recovery Current VDD D= Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - P.W. + Qgs2 Qgs1 Qgd + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode Forward Drop Inductor Curent Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel VDD ISD *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs 6 www.irf.com IRF6785MTRPbF DirectFET Substrate and PCB Layout, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. www.irf.com 7 IRF6785MTRPbF DirectFET Outline Dimension, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS IMPERIAL METRIC CODE A B C D E F G H J K L M R P MIN 6.25 4.80 3.85 0.35 0.68 0.68 0.93 0.63 0.28 1.13 2.53 0.616 0.020 0.08 MAX 6.35 5.05 3.95 0.45 0.72 0.72 0.97 0.67 0.32 1.26 2.66 0.676 0.080 0.17 MAX 0.246 0.189 0.152 0.014 0.027 0.027 0.037 0.025 0.011 0.044 0.100 0.0235 0.0008 0.003 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.038 0.026 0.013 0.050 0.105 0.0274 0.0031 0.007 DirectFET Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" 8 www.irf.com IRF6785MTRPbF DirectFET Tape & Reel Dimension (Showing component orientation). LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MIN MAX MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 5.10 0.209 5.30 0.256 6.50 0.264 6.70 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6785TRPBF). For 1000 parts on 7" reel, order IRF6785TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) METRIC IMPERIAL METRIC IMPERIAL CODE MIN MAX MIN MAX MIN MAX MAX MIN A 6.9 N.C 12.992 N.C 330.0 177.77 N.C N.C B 0.75 0.795 N.C 20.2 19.06 N.C N.C N.C C 0.53 0.504 0.50 12.8 13.5 0.520 12.8 13.2 D 0.059 0.059 N.C 1.5 1.5 N.C N.C N.C E 2.31 3.937 N.C 100.0 58.72 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 13.50 18.4 G 0.47 0.488 N.C 12.4 11.9 0.567 12.01 14.4 H 0.47 0.469 N.C 11.9 11.9 0.606 12.01 15.4 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/07 9