IRF IRF6785MTRPBF

DIGITAL AUDIO MOSFET
PD - 97282
IRF6785MTRPbF
Key Parameters
200
Features
VDS
• Latest MOSFET Silicon technology
• Key parameters optimized for Class-D audio amplifier
RDS(on) typ. @
applications
Qg typ.
• Low RDS(on) for improved efficiency
• Low Qg for better THD and improved efficiency
RG(int) max
• Low Qrr for better THD and lower EMI
• Low package stray inductance for reduced ringing and lower
EMI
• Can deliver up to 250W per channel into 8Ω Load in
Half-Bridge Configuration Amplifier
• Dual sided cooling compatible
· Compatible with existing surface mount technologies
· RoHS compliant containing no lead or bromide
MZ
·Lead-Free (Qualified up to 260°C Reflow)
Applicable DirectFET Outline and Substrate Outline (see p. 6, 7 for details)
SQ
SX
ST
SH
MQ
MX
MT
MN
VGS = 10V
85
26
V
m:
nC
3.0
DirectFET™ ISOMETRIC
MZ
Description
This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the
latest processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse
recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as
efficiency, THD, and EMI.
The IRF6785MPbF device utilizes DirectFETTM packaging technology. DirectFETTM packaging technology offers lower parasitic
inductance and resistance when compared to conventional wirebonded SOIC packaging. Lower inductance improves EMI
performance by reducing the voltage ringing that accompanies fast current transients. The DirectFETTM package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and processes. The
DirectFETTM package also allows dual sided cooling to maximize thermal transfer in power systems, improving thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable device for
Class-D audio amplifier applications.
Absolute Maximum Ratings
Max.
Units
VDS
Drain-to-Source Voltage
Parameter
200
V
VGS
Gate-to-Source Voltage
± 20
ID @ TC = 25°C
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
19
3.4
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
2.7
IDM
Pulsed Drain Current
27
c
Maximum Power Dissipation
57
PD @TA = 25°C
Power Dissipation
2.8
PD @TA = 70°C
EAS
Single Pulse Avalanche Energy
PD @TC = 25°C
e
Power Dissipation e
c
IAR
Avalanche Current
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
A
W
1.8
d
33
mJ
8.4
A
0.022
-40 to + 150
W/°C
°C
Thermal Resistance
Parameter
ek
hk
Junction-to-Ambient ik
Junction-to-Case jk
Typ.
Max.
Units
°C/W
RθJA
Junction-to-Ambient
–––
45
RθJA
Junction-to-Ambient
12.5
–––
20
–––
RθJA
RθJC
RθJ-PCB
Junction-to-PCB Mounted
Notes  through Š are on page 2
www.irf.com
–––
1.4
1.4
–––
1
04/18/07
IRF6785MTRPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Conditions
Min.
Typ.
Max.
Units
V(BR)DSS
Drain-to-Source Breakdown Voltage
200
–––
–––
V
∆V(BR)DSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
0.22
–––
V/°C
Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance
–––
85
100
VGS(th)
Gate Threshold Voltage
3.0
–––
5.0
mΩ
V
VDS = VGS, ID = 100µA
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
IGSS
RG(int)
Gate-to-Source Forward Leakage
–––
–––
250
–––
–––
100
VGS = 0V, ID = 250µA
VGS = 10V, ID = 4.2A
f
VDS = 200V, VGS = 0V
VDS = 160V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Internal Gate Resistance
–––
–––
3.0
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Parameter
gfs
Qg
Min.
Typ.
Max.
Units
Forward Transconductance
8.9
–––
–––
S
Conditions
VDS = 10V, ID = 4.2A
Total Gate Charge
–––
26
36
VDS = 100V
Qgs1
Pre-Vth Gate-to-Source Charge
–––
6.3
–––
VGS = 10V
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.3
–––
Qgd
Gate-to-Drain Charge
–––
6.9
–––
Qgodr
–––
11.5
–––
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
8.2
–––
td(on)
Turn-On Delay Time
–––
6.2
–––
VDD = 100V
tr
Rise Time
–––
8.6
–––
ID = 4.2A
td(off)
Turn-Off Delay Time
–––
7.2
–––
tf
Fall Time
–––
14
–––
RG = 6.0Ω
VGS = 10V
Ciss
Input Capacitance
–––
1500
–––
VGS = 0V
Coss
Output Capacitance
–––
160
–––
Crss
Reverse Transfer Capacitance
–––
31
–––
Coss
Output Capacitance
–––
1140
–––
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
69
–––
VGS = 0V, VDS = 160V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
140
–––
VGS = 0V, VDS = 0V to 160V
Min.
Typ.
Max.
–––
–––
19
ID = 4.2A
nC
ns
See Fig. 6 and 17
f
VDS = 25V
pF
g
Diode Characteristics
Parameter
Continuous Source Current
IS
(Body Diode)
ISM
Pulsed Source Current
c
Units
A
–––
–––
G
p-n junction diode.
VSD
Diode Forward Voltage
–––
trr
Reverse Recovery Time
–––
71
Qrr
Reverse Recovery Charge
–––
190
2
D
showing the
integral reverse
27
(Body Diode)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.94mH, RG = 25Ω, IAS = 8.4A.
ƒ Surface mounted on 1 in. square Cu board.
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same
charging time as Coss while VDS is rising from 0 to 80% VDSS.
Conditions
MOSFET symbol
–––
S
V
TJ = 25°C, IS = 4.2A, VGS = 0V
–––
ns
–––
nC
TJ = 25°C, IF = 4.2A, VDD = 25V
di/dt = 100A/µs
1.3
f
f
† Used double sided cooling , mounting pad with large heatsink.
‡ Mounted on minimum footprint full size board with
metalized back and with small clip heatsink.
ˆ TC measured with thermal couple mounted to top
(Drain) of part.
‰ Rθ is measured at TJ of approximately 90°C.
www.irf.com
IRF6785MTRPbF
100
100
10
BOTTOM
VGS
15V
10V
9.0V
8.0V
7.0V
6.5V
6.0V
5.5V
VGS
15V
10V
9.0V
8.0V
7.0V
6.5V
6.0V
5.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
5.5V
1
10
BOTTOM
5.5V
1
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
0.1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
100
100
2.5
VDS = 25V
≤60µs PULSE WIDTH
10
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
T J = -40°C
T J = 25°C
T J = 150°C
1
0.1
ID = 4.2A
VGS = 10V
2.0
1.5
1.0
0.5
3
4
5
6
7
8
12.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + C gd, C ds SHORTED
ID= 4.2A
VGS, Gate-to-Source Voltage (V)
Crss = C gd
Coss = Cds + C gd
10000
Ciss
1000
Coss
100
20 40 60 80 100 120 140 160
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
Crss
10
10.0
VDS= 160V
VDS= 100V
8.0
VDS= 40V
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
1000
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
5
10
15
20
25
30
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRF6785MTRPbF
100
T J = -40°C
T J = 25°C
T J = 150°C
10
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
10
10msec
1msec
1
DC
T A = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
0.1
0.2
0.4
0.6
0.8
1.0
0
1.2
1
10
100
1000
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
5.0
VGS(th) , Gate Threshold Voltage (V)
20
ID, Drain Current (A)
0.1
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
15
10
5
0
4.5
4.0
ID = 100µA
3.5
ID = 250µA
3.0
2.5
25
50
75
100
125
150
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
Thermal Response ( Z thJA ) °C/W
100
D = 0.50
10
0.20
0.10
0.05
0.02
0.01
1
τJ
0.1
R1
R1
τJ
τ1
R2
R2
R3
R3
τA
τ1
τ2
τ2
τ3
τ3
τ4
τA
τ4
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.01
0.001
1E-006
1E-005
0.0001
τi (sec)
Ri (°C/W)
R4
R4
1.2801
0.000322
8.7256
0.164798
21.75
2.2576
13.2511
69
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + T A
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ
4
www.irf.com
RDS(on), Drain-to -Source On Resistance ( mΩ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRF6785MTRPbF
500
ID = 4.2A
400
300
200
T J = 125°C
100
T J = 25°C
0
4
6
8
10
12
14
200
175
T J = 125°C
150
125
T J = 25°C
100
75
Vgs = 10V
50
0
16
5
VGS, Gate -to -Source Voltage (V)
+
V
- DD
IAS
VGS
20V
A
0.01Ω
tp
Fig 15a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
DRIVER
D.U.T
RG
20
150
15V
L
15
Fig 13. On-Resistance vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
VDS
10
ID, Drain Current (A)
ID
TOP
0.85A
1.04A
BOTTOM 8.4A
125
100
75
50
25
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
I AS
Fig 15b. Unclamped Inductive Waveforms
VDS
VGS
RD
VDS
90%
D.U.T.
RG
+
- VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 16a. Switching Time Test Circuit
www.irf.com
10%
VGS
td(on)
tr
td(off)
tf
Fig 16b. Switching Time Waveforms
5
IRF6785MTRPbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 17b. Gate Charge Waveform
Fig 17a. Gate Charge Test Circuit
Driver Gate Drive
D.U.T
+
‚
RG
*
•
•
•
•
„
D.U.T. ISD Waveform
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
**
P.W.
Period
***
Reverse
Recovery
Current
VDD
D=
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-

P.W.
+
ƒ
Qgs2 Qgs1
Qgd
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
Forward Drop
Inductor Curent
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
VDD
ISD
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
6
www.irf.com
IRF6785MTRPbF
DirectFET™ Substrate and PCB Layout, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
www.irf.com
7
IRF6785MTRPbF
DirectFET™ Outline Dimension, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
IMPERIAL
METRIC
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
MIN
6.25
4.80
3.85
0.35
0.68
0.68
0.93
0.63
0.28
1.13
2.53
0.616
0.020
0.08
MAX
6.35
5.05
3.95
0.45
0.72
0.72
0.97
0.67
0.32
1.26
2.66
0.676
0.080
0.17
MAX
0.246
0.189
0.152
0.014
0.027
0.027
0.037
0.025
0.011
0.044
0.100
0.0235
0.0008
0.003
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.038
0.026
0.013
0.050
0.105
0.0274
0.0031
0.007
DirectFET™ Part Marking
GATE MARKING
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
8
www.irf.com
IRF6785MTRPbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.201
5.10
0.209
5.30
0.256
6.50
0.264
6.70
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6785TRPBF). For 1000 parts on 7"
reel, order IRF6785TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
METRIC
IMPERIAL
METRIC
IMPERIAL
CODE
MIN
MAX
MIN
MAX
MIN
MAX
MAX
MIN
A
6.9
N.C
12.992 N.C
330.0
177.77 N.C
N.C
B
0.75
0.795
N.C
20.2
19.06
N.C
N.C
N.C
C
0.53
0.504
0.50
12.8
13.5
0.520
12.8
13.2
D
0.059
0.059
N.C
1.5
1.5
N.C
N.C
N.C
E
2.31
3.937
N.C
100.0
58.72
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
13.50
18.4
G
0.47
0.488
N.C
12.4
11.9
0.567
12.01
14.4
H
0.47
0.469
N.C
11.9
11.9
0.606
12.01
15.4
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/07
9