PD - 96917 IRF6619 DirectFET Power MOSFET Typical values (unless otherwise specified) l l l l l l l l Low Profile (<0.7 mm) VDSS VGS RDS(on) RDS(on) Dual Sided Cooling Compatible 20V max ±20V max 1.65mΩ@ 10V 2.2mΩ@ 4.5V Ultra Low Package Inductance Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) Optimized for High Frequency Switching above 1MHz Ideal for CPU Core DC-DC Converters 38nC 13nC 3.5nC 18nC 22nC 2.0V Optimized for Sync. FET socket of Sync. Buck Converter Low Conduction Losses Compatible with existing Surface Mount Techniques MX Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX DirectFET ISOMETRIC MX MT Description The IRF6619 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6619 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6619 has been optimized for parameters that are critical in synchronous buck operating from 12 volt buss converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6619 offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications. Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage 20 V VGS Gate-to-Source Voltage ±20 ID @ TA = 25°C Continuous Drain Current, VGS @ 10V ID @ TA = 70°C Continuous Drain Current, VGS ID @ TC = 25°C Continuous Drain Current, VGS IDM EAS (Thermally limited) Pulsed Drain Current Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy Parameter e e h @ 10V h @ 10V k(Package Limited) e Notes: VGS, Gate-to-Source Voltage (V) Typical R DS (on) (mΩ) TJ = 125°C 2.0 TJ = 25°C 2.0 4.0 6.0 8.0 VGS, Gate-to-Source Voltage (V) 10.0 Fig 1. Typical On-Resistance Vs. Gate Voltage Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Repetitive rating; pulse width limited by max. junction temperature. www.irf.com 240 mJ See Fig. 14, 15, 17a, 17b, A mJ 4.0 1.0 A 240 ID = 30A 3.0 24 150 f 6.0 5.0 30 12 ID= 16A 10 VDS = 16V VDS= 10V 8 6 4 2 0 0 20 40 60 80 100 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage Limited by TJmax, starting TJ = 25°C, L = 0.86mH, RG = 25Ω, IAS = 24A, VGS =10V. Part not recommended for use above this value. Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple mounted to top (Drain) of part. 1 2/10/05 IRF6619 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 20 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 14 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 1.65 2.2 ––– 2.2 3.0 V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 30A g VGS = 4.5V, ID = 24A g VDS = VGS, ID = 250µA VGS(th) Gate Threshold Voltage 1.55 ––– 2.45 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.8 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 89 ––– ––– Qg Total Gate Charge ––– 38 57 Pre-Vth Gate-to-Source Charge ––– 10.2 ––– VDS = 10V VGS = 4.5V IGSS Qgs1 VDS = 16V, VGS = 0V VDS = 16V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 10V, ID = 24A Qgs2 Post-Vth Gate-to-Source Charge ––– 3.5 ––– Qgd Gate-to-Drain Charge ––– 13.2 ––– ID = 16A Qgodr Gate Charge Overdrive ––– 11.1 ––– See Fig. 17 Qsw Switch Charge (Qgs2 + Qgd) ––– 16.7 ––– Qoss Output Charge ––– 22 ––– nC RG Gate Resistance ––– ––– 2.3 Ω td(on) Turn-On Delay Time ––– 21 ––– tr Rise Time ––– 71 ––– td(off) Turn-Off Delay Time ––– 25 ––– tf Fall Time ––– 9.3 ––– Ciss Input Capacitance ––– 5040 nC VDS = 10V, VGS = 0V VDD = 16V, VGS = 4.5Vg ID = 24A ns Clamped Inductive Load ––– VGS = 0V pF VDS = 10V Coss Output Capacitance ––– 1580 ––– Crss Reverse Transfer Capacitance ––– 780 ––– Min. Typ. Max. Units ––– ––– ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current Pulsed Source Current MOSFET symbol 30 (Body Diode) ISM A ––– ––– Conditions showing the integral reverse 240 p-n junction diode. (Body Diode)e VSD Diode Forward Voltage ––– 0.8 1.0 V TJ = 25°C, IS = 24A, VGS = 0V g trr Reverse Recovery Time ––– 29 44 ns TJ = 25°C, IF = 24A Qrr Reverse Recovery Charge ––– 18 27 nC di/dt = 100A/µs g Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6619 Absolute Maximum Ratings Parameter PD @TC = 25°C h Power Dissipation h Power Dissipation k TP Peak Soldering Temperature TJ Operating Junction and TSTG Storage Temperature Range Power Dissipation PD @TA = 25°C PD @TA = 70°C Max. Units 2.8 W 1.8 89 270 °C -40 to + 150 Thermal Resistance Parameter hl Junction-to-Ambient il Junction-to-Ambient jl Junction-to-Case kl RθJA Typ. Max. ––– 45 Junction-to-Ambient RθJA RθJA RθJC RθJ-PCB 12.5 ––– 20 ––– ––– 1.4 Junction-to-PCB Mounted Linear Derating Factor 1.0 h Units °C/W ––– 0.017 W/°C 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 Thermal Response ( Z thJA ) 10 1 0.1 τJ 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τC τ τ3 τ2 τ4 τ3 τ4 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 τi (sec) Ri (°C/W) R4 R4 0.6784 0.00086 17.299 0.57756 17.566 8.94 9.4701 106 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted to a PCB with a thin gap filler and heat sink. (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6619 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 10 2.5V 1 ≤ 60µs PULSE WIDTH Tj = 25°C 100 BOTTOM VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 2.5V 10 ≤ 60µs PULSE WIDTH Tj = 150°C 0.1 1 0.1 1 10 0.1 VDS , Drain-to-Source Voltage (V) 1 10 VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 100.0 1.5 Typical R DS(on) (Normalized) ID, Drain-to-Source Current(Α) ID = 30A TJ = 150°C TJ = 25°C TJ = -40°C 10.0 1.0 VDS = 10V VGS = 10V 1.0 ≤ 60µs PULSE WIDTH 0.1 1.5 2.0 2.5 3.0 3.5 0.5 4.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) (mΩ) DS(on) Ciss 4000 Typical R C, Capacitance (pF) 80 100 120 140 160 TA= 25°C 9 VGS = 3.0V 8 VGS = 3.5V 7 VGS = 4.5V VGS = 4.0V VGS = 5.0V 6 VGS = 10V 5 4 Coss 3 Crss 2 1 0 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 60 10 Coss = Cds + Cgd 2000 40 Fig 7. Normalized On-Resistance vs. Temperature VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 6000 20 TJ , Junction Temperature (°C) Fig 6. Typical Transfer Characteristics 8000 0 0 40 80 120 160 200 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF6619 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 100.0 TJ = 150°C TJ = 25°C 10.0 TJ = -40°C 1.0 VGS = 0V 0.6 1.0 1.4 100 100µsec 10 1msec 10msec 1 TA = 25°C Tj = 150°C Single Pulse 0.1 0.1 0.2 OPERATION IN THIS AREA LIMITED BY R DS (on) 0.01 1.8 VSD , Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage 1.00 10.00 100.00 Fig11. Maximum Safe Operating Area 180 2.5 LIMITED BY PACKAGE VGS(th) Gate threshold Voltage (V) 160 140 ID , Drain Current (A) 0.10 VDS , Drain-toSource Voltage (V) 120 100 80 60 40 20 0 25 50 75 100 125 2.0 ID = 250µA 1.5 1.0 0.5 150 -75 TC , Case Temperature (°C) -50 -25 0 25 50 75 100 125 150 TJ , Junction Temperature ( °C ) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax Avalanche Current (A) 100 10 0.01 1 0.05 0.10 0.1 0.01 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth www.irf.com 5 IRF6619 EAR , Avalanche Energy (mJ) 300 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 3) Single Pulse ID = 24A 200 100 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav EAS, Single Pulse Avalanche Energy (mJ) 1000 15V ID 12A 15A BOTTOM 24A TOP 800 D.U.T RG 600 20V VGS 400 DRIVER L VDS + V - DD IAS A 0.01Ω tp Fig 17a. Unclamped Inductive Test Circuit V(BR)DSS tp 200 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Drain Current Current Regulator Same Type as D.U.T. I AS Fig 17b. Unclamped Inductive Waveforms LD VDS 50KΩ 12V .2µF + .3µF VDD - + V - DS D.U.T. D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% 3mA IG ID Current Sampling Resistors Fig 19a. Switching Time Test Circuit Fig 18a. Gate Charge Test Circuit Id Vds Vgs VDS 90% 10% Vgs(th) VGS Qgs1 Qgs2 td(on) Qgd Qgodr Fig 18b. Gate Charge Waveform 6 tr td(off) tf Fig 19b. Switching Time Waveforms www.irf.com IRF6619 D.U.T Driver Gate Drive + + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period P.W. Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage + Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 20. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. VGS This includes all recommendations for stencil and substrate designs. 1- Drain 2- Drain 3- Source 4- Source 5- Gate 6- Drain 7- Drain 6 1 3 5 4 7 www.irf.com 2 7 IRF6619 DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE MIN MAX A 6.35 6.25 B 5.05 4.80 C 3.95 3.85 D 0.45 0.35 E 0.72 0.68 F 0.72 0.68 G 1.42 1.38 H 0.84 0.80 J 0.42 0.38 K 0.88 1.01 L 2.28 2.41 M 0.59 0.70 N 0.03 0.08 P 0.08 0.17 IMPERIAL MAX MAX 0.246 0.250 0.189 0.201 0.152 0.156 0.014 0.018 0.027 0.028 0.027 0.028 0.054 0.056 0.032 0.033 0.015 0.017 0.035 0.039 0.090 0.095 0.023 0.028 0.001 0.003 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6619 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6619). For 1000 parts on 7" reel, order IRF6619TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MIN MIN MAX MIN MAX MAX 12.992 6.9 N.C 177.77 N.C N.C 0.795 0.75 N.C 19.06 N.C N.C 0.504 0.53 0.50 13.5 0.520 12.8 0.059 0.059 1.5 N.C N.C N.C 3.937 2.31 58.72 N.C N.C N.C N.C N.C N.C 0.53 0.724 13.50 0.488 0.47 11.9 N.C 0.567 12.01 0.469 0.47 11.9 N.C 0.606 12.01 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.2/05 www.irf.com 9