PD - 94906 IRG4BC20FDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Fast: optimized for medium operating frequencies ( 1-5 kHz in hard switching, >20 kHz in resonant mode). Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations Industry standard TO-220AB package Lead-Free Fast CoPack IGBT C VCES = 600V VCE(on) typ. = 1.66V G @VGE = 15V, IC = 9.0A E n-channel Benefits Generation -4 IGBTs offer highest efficiencies available IGBTs optimized for specific application conditions HEXFRED diodes optimized for performance with IGBTs. Minimized recovery characteristics require less/no snubbing Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBTs TO-220AB Absolute Maximum Ratings Parameter V CES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 16 9.0 64 64 7.0 32 ± 20 60 24 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbfin (1.1 Nm) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. 0.50 2 (0.07) 2.1 3.5 80 Units °C/W g (oz) 1 12/23/03 IRG4BC20FDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage 0.72 V CE(on) Collector-to-Emitter Saturation Voltage 1.66 2.06 1.76 VGE(th) Gate Threshold Voltage 3.0 ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage -11 gfe Forward Transconductance 2.9 5.1 ICES Zero Gate Voltage Collector Current V FM Diode Forward Voltage Drop 1.4 1.3 IGES Gate-to-Emitter Leakage Current V(BR)CES Max. Units Conditions V VGE = 0V, IC = 250µA V/°C VGE = 0V, IC = 1.0mA 2.0 IC = 9.0A V GE = 15V V IC = 16A See Fig. 2, 5 IC = 9.0A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 250µA S VCE = 100V, IC = 9.0A 250 µA VGE = 0V, VCE = 600V 1700 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 8.0A See Fig. 13 1.6 IC = 8.0A, TJ = 150°C ±100 n A VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres t rr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb 2 Min. Typ. 27 4.2 9.9 43 20 240 150 0.25 0.64 0.89 41 22 320 290 1.35 7.5 540 37 7.0 37 55 3.5 4.5 65 124 240 210 Max. Units Conditions 40 IC = 9.0A 6.2 nC VCC = 400V See Fig. 8 15 VGE = 15V TJ = 25°C ns IC = 9.0A, VCC = 480V 360 VGE = 15V, RG = 50Ω 220 Energy losses include "tail" and diode reverse recovery. mJ See Fig. 9, 10, 18 1.3 TJ = 150°C, See Fig. 11, 18 ns IC = 9.0A, VCC = 480V VGE = 15V, RG = 50Ω Energy losses include "tail" and mJ diode reverse recovery. nH Measured 5mm from package VGE = 0V pF VCC = 30V See Fig. 7 = 1.0MHz 55 ns TJ = 25°C See Fig. 90 TJ = 125°C 14 IF = 8.0A 5.0 A TJ = 25°C See Fig. 8.0 TJ = 125°C 15 VR = 200V 138 nC TJ = 25°C See Fig. 360 TJ = 125°C 16 di/dt = 200A/µs A/µs TJ = 25°C See Fig. TJ = 125°C 17 www.irf.com IRG4BC20FDPbF 14 For both: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified LOAD CURRENT (A) 12 10 8 Power Dissipation = 13 W Square wave: 60% of rated voltage 6 I 4 Ideal diodes 2 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 o C TJ = 150 o C 10 1 V GE = 15V 20µs PULSE WIDTH 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C, Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 o C 10 TJ = 25 oC 1 V CC = 50V 5µs PULSE WIDTH 5 6 7 8 9 10 11 12 13 14 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC20FDPbF 3.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 16 12 8 4 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) VGE = 15V 80 us PULSE WIDTH IC = 18 A 2.0 IC = 9.0 9A IC = 4.5 A 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 1 0.50 0.20 0.10 PDM 0.05 0.1 0.02 0.01 0.01 0.00001 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC20FDPbF 1000 600 VGE , Gate-to-Emitter Voltage (V) 800 C, Capacitance (pF) 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc Cies 400 200 Coes VCC = 400V I C = 9.0A 16 12 8 4 Cres 0 1 10 0 100 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 10 V CC = 480V V GE = 15V TJ = 25 ° C 0.88 I C = 9.0A 0.86 0.84 0.82 0.80 10 20 30 40 Ω RG , Gate Resistance (Ohm) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 10 15 20 25 30 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 0.90 0 5 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.78 0 50 Ω RG = 50Ohm VGE = 15V VCC = 480V IC = 18 A IC = 9.09 A 1 IC = 4.5 A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC20FDPbF 100 = 50Ohm Ω = 150 ° C = 480V = 15V I C , Collector-to-Emitter Current (A) RG TJ VCC 2.5 VGE 2.0 1.5 1.0 0.5 0.0 0 4 8 12 16 VGE = 20V T J = 125 oC 10 1 20 SAFE OPERATING AREA 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 Instantaneous Forward Current - I F (A) Total Switching Losses (mJ) 3.0 10 TJ = 150°C TJ = 125°C TJ = 25°C 1 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4BC20FDPbF 100 100 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 80 60 I F = 8.0A 40 I IRRM - (A) t rr - (ns) IF = 16A I F = 16A 10 IF = 8.0A I F = 4.0A I F = 4.0A 20 0 100 1 100 1000 di f /dt - (A/µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt di f /dt - (A/µs) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt 500 10000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) Q RR - (nC) 400 300 I F = 16A 200 I F = 8.0A 1000 IF = 4.0A IF = 8.0A I F = 16A 100 IF = 4.0A 0 100 di f /dt - (A/µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 100 100 di f /dt - (A/µs) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4BC20FDPbF 90% Vge Same type device as D.U.T. +Vge Vce 430µF 80% of Vce D.U.T. Ic 90% Ic 10% Vce Ic 5% Ic td(off) tf Eoff = Fig. 18a - Test Circuit for Measurement of ∫ t1+5µS Vce icIcdtdt Vce t1 ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = tx DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) 10% Irr Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 ∫ t2 VceieIcdt dt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ +Vg 10% Vcc Vcc trr id Ic dtdt tx ∫ t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4BC20FDPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 0 - 480V 480V 4 X IC @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4BC20FDPbF Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 50Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. TO-220AB Package Outline Dimensions are shown in millimeters (inches) 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 3 4- DRAIN 14.09 (.555) 13.47 (.530) 4- COLLECTOR 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 - DRAIN 1- GATE 1- GATE 3 - SOURCE 2- COLLECTOR 2- DRAIN 3- SOURCE 3- EMITTER 4 - DRAIN HEXFET 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 LOT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB LY L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y LOT CODE PAR T NU MB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/03 10 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/