PHILIPS IRF830

Philips Semiconductors
Product specification
PowerMOS transistor
Avalanche energy rated
IRF830
FEATURES
SYMBOL
QUICK REFERENCE DATA
• Repetitive Avalanche Rated
• Fast switching
• High thermal cycling performance
• Low thermal resistance
d
VDSS = 500 V
ID = 5.9 A
g
RDS(ON) ≤ 1.5 Ω
s
GENERAL DESCRIPTION
PINNING
N-channel, enhancement mode
field-effect
power
transistor,
intended for use in off-line switched
mode power supplies, T.V. and
computer monitor power supplies,
d.c. to d.c. converters, motor control
circuits and general purpose
switching applications.
PIN
SOT78 (TO220AB)
DESCRIPTION
1
gate
2
drain
3
source
tab
tab
drain
The IRF830 is supplied in the
SOT78 (TO220AB) conventional
leaded package.
1 23
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VDSS
VDGR
VGS
ID
Drain-source voltage
Drain-gate voltage
Gate-source voltage
Continuous drain current
Tj = 25 ˚C to 150˚C
Tj = 25 ˚C to 150˚C; RGS = 20 kΩ
IDM
PD
Tj, Tstg
Pulsed drain current
Total dissipation
Operating junction and
storage temperature range
- 55
500
500
± 30
5.9
3.7
24
125
150
V
V
V
A
A
A
W
˚C
MIN.
MAX.
UNIT
-
287
mJ
-
10
mJ
-
5.9
A
Tmb = 25 ˚C; VGS = 10 V
Tmb = 100 ˚C; VGS = 10 V
Tmb = 25 ˚C
Tmb = 25 ˚C
AVALANCHE ENERGY LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER
EAS
EAR
IAS, IAR
CONDITIONS
Non-repetitive avalanche
energy
Unclamped inductive load, IAS = 4.2 A;
tp = 0.21 ms; Tj prior to avalanche = 25˚C;
VDD ≤ 50 V; RGS = 50 Ω; VGS = 10 V; refer
to fig:17
Repetitive avalanche energy1 IAR = 5.9 A; tp = 2.5 µs; Tj prior to
avalanche = 25˚C; RGS = 50 Ω; VGS = 10 V;
refer to fig:18
Repetitive and non-repetitive
avalanche current
1 pulse width and repetition rate limited by Tj max.
March 1999
1
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
Avalanche energy rated
IRF830
THERMAL RESISTANCES
SYMBOL PARAMETER
Rth j-mb
Rth j-a
Thermal resistance junction
to mounting base
Thermal resistance junction
to ambient
CONDITIONS
MIN.
in free air
TYP. MAX. UNIT
-
-
1
K/W
-
60
-
K/W
ELECTRICAL CHARACTERISTICS
Tj = 25 ˚C unless otherwise specified
SYMBOL PARAMETER
CONDITIONS
MIN.
Drain-source breakdown
voltage
∆V(BR)DSS / Drain-source breakdown
∆Tj
voltage temperature
coefficient
RDS(ON)
Drain-source on resistance
VGS(TO)
Gate threshold voltage
gfs
Forward transconductance
IDSS
Drain-source leakage current
VGS = 0 V; ID = 0.25 mA
500
-
-
V
VDS = VGS; ID = 0.25 mA
-
0.1
-
%/K
2.0
2
-
1.2
3.0
3.6
1
30
10
1.5
4.0
25
250
200
Ω
V
S
µA
µA
nA
V(BR)DSS
TYP. MAX. UNIT
IGSS
VGS = 10 V; ID = 3 A
VDS = VGS; ID = 0.25 mA
VDS = 30 V; ID = 3 A
VDS = 500 V; VGS = 0 V
VDS = 400 V; VGS = 0 V; Tj = 125 ˚C
Gate-source leakage current VGS = ±30 V; VDS = 0 V
Qg(tot)
Qgs
Qgd
Total gate charge
Gate-source charge
Gate-drain (Miller) charge
ID = 6 A; VDD = 400 V; VGS = 10 V
-
53
4
28
64
6
34
nC
nC
nC
td(on)
tr
td(off)
tf
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
VDD = 250 V; RD = 39 Ω;
RG = 12 Ω
-
10
33
92
40
-
ns
ns
ns
ns
Ld
Ld
Ls
Internal drain inductance
Internal drain inductance
Internal source inductance
Measured from tab to centre of die
Measured from drain lead to centre of die
Measured from source lead to source
bond pad
-
3.5
4.5
7.5
-
nH
nH
nH
Ciss
Coss
Crss
Input capacitance
Output capacitance
Feedback capacitance
VGS = 0 V; VDS = 25 V; f = 1 MHz
-
610
96
54
-
pF
pF
pF
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
Tj = 25 ˚C unless otherwise specified
SYMBOL PARAMETER
CONDITIONS
IS
Tmb = 25˚C
-
-
5.9
A
Tmb = 25˚C
-
-
24
A
VSD
Continuous source current
(body diode)
Pulsed source current (body
diode)
Diode forward voltage
IS = 6 A; VGS = 0 V
-
-
1.2
V
trr
Qrr
Reverse recovery time
Reverse recovery charge
IS = 6 A; VGS = 0 V; dI/dt = 100 A/µs
-
390
4
-
ns
µC
ISM
March 1999
MIN.
2
TYP. MAX. UNIT
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
Avalanche energy rated
Normalised Power Derating
PD%
120
IRF830
1
110
100
90
Zth j-mb, Transient thermal impedance (K/W)
D = 0.5
PHP3N60
0.2
0.1
0.1 0.05
80
70
0.02
60
50
40
0.01
single pulse
30
PD
tp
20
10
D=
tp
T
t
T
0
0
20
40
60
80
100
Tmb / C
120
0.001
1us
140
Fig.1. Normalised power dissipation.
PD% = 100⋅PD/PD 25 ˚C = f(Tmb)
120
1ms
100us
10ms
tp, pulse width (s)
1s
100ms
Fig.4. Transient thermal impedance.
Zth j-mb = f(t); parameter D = tp/T
Normalised Current Derating
ID%
10us
15
110
PHP4N50
ID, Drain current (Amps)
Tj = 25 C
7V
100
90
10 V
6.5 V
80
10
6V
70
60
50
5.5 V
40
5
5V
30
20
10
VGS = 4.5 V
0
0
20
40
60
80
Tmb / C
100
120
0
140
Fig.2. Normalised continuous drain current.
ID% = 100⋅ID/ID 25 ˚C = f(Tmb); conditions: VGS ≥ 10 V
100
5
10
15
20
VDS, Drain-Source voltage (Volts)
25
30
Fig.5. Typical output characteristics.
ID = f(VDS); parameter VGS
PHP4N50
ID, Drain current (Amps)
0
RDS(on), Drain-Source on resistance (Ohms)
4
4.5 V
5V
PHP4N50
Tj = 25 C
5.5 V
VGS = 6 V
ID
S/
)=
VD
3
tp = 10 us
N
(O
10
6.5 V
S
RD
7V
2
100 us
1 ms
1
DC
0.1
10
1
10 ms
100
1000
VDS, Drain-source voltage (Volts)
0
10000
Fig.3. Safe operating area. Tmb = 25 ˚C
ID & IDM = f(VDS); IDM single pulse; parameter tp
March 1999
10 V
0
5
10
ID, Drain current (Amps)
15
Fig.6. Typical on-state resistance.
RDS(ON) = f(ID); parameter VGS
3
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
Avalanche energy rated
IRF830
VGS(TO) / V
PHP4N50
ID, Drain current (Amps)
15
VDS > ID x RDS(on)max
max.
4
typ.
3
10
min.
2
5
1
Tj = 25 C
Tj = 150 C
0
0
0
2
4
6
VGS, Gate-Source voltage (Volts)
8
-60
10
gfs, Transconductance (S)
-20
0
20
40
60
Tj / C
80
100
120
140
Fig.10. Gate threshold voltage.
VGS(TO) = f(Tj); conditions: ID = 0.25 mA; VDS = VGS
Fig.7. Typical transfer characteristics.
ID = f(VGS); parameter Tj
6
-40
PHP4N50
1E-01
SUB-THRESHOLD CONDUCTION
ID / A
VDS > ID x RDS(on)max
5
1E-02
Tj = 25 C
150 C
4
2%
1E-03
typ
98 %
3
1E-04
2
1E-05
1
0
1E-06
0
5
ID, Drain current (A)
10
0
15
Fig.8. Typical transconductance.
gfs = f(ID); parameter Tj
2
VGS / V
3
4
Fig.11. Sub-threshold drain current.
ID = f(VGS); conditions: Tj = 25 ˚C; VDS = VGS
Normalised RDS(ON) = f(Tj)
a
1
1000
PHP4N50
Junction capacitances (pF)
Ciss
2
100
1
Coss
Crss
0
-60
-40
-20
0
20
40 60
Tj / C
80
10
100 120 140
Fig.9. Normalised drain-source on-state resistance.
a = RDS(ON)/RDS(ON)25 ˚C = f(Tj); ID = 3 A; VGS = 10 V
March 1999
1
10
100
VDS, Drain-Source voltage (Volts)
1000
Fig.12. Typical capacitances, Ciss, Coss, Crss.
C = f(VDS); conditions: VGS = 0 V; f = 1 MHz
4
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
Avalanche energy rated
15
IRF830
PHP4N50
VGS, Gate-Source voltage (Volts)
20
IF, Source-Drain diode current (Amps)
PHP4N50
VGS = 0 V
ID = 6 A
Tj = 25 C
250 V
15
100 V
10
VDD = 400 V
10
Tj = 25 C
150 C
5
5
0
0
10
20
30
40
50
Qg, Gate charge (nC)
60
70
0
80
0.2
0.4
0.6
0.8
1
VSDS, Source-Drain voltage (Volts)
1.2
1.4
Fig.16. Source-Drain diode characteristic.
IF = f(VSDS); parameter Tj
Fig.13. Typical turn-on gate-charge characteristics.
VGS = f(QG); parameter VDS
1000
0
PHP4N50
Switching times (ns)
VDD = 250 V
VGS = 10 V
RD = 39 Ohms
Tj = 25 C
Non-repetitive Avalanche current, IAS (A)
10
25 C
100
td(off)
tf
Tj prior to avalanche = 125 C
1
tr
VDS
td(on)
10
tp
ID
1
0.1
1E-06
0
10
20
30
40
RG, Gate resistance (Ohms)
50
1E-05
60
1E-04
1E-03
1E-02
Avalanche time, tp (s)
Fig.14. Typical switching times; td(on), tr, td(off), tf = f(RG)
1.15
PHP6N50E
Fig.17. Maximum permissible non-repetitive
avalanche current (IAS) versus avalanche time (tp);
unclamped inductive load
Normalised Drain-source breakdown voltage
V(BR)DSS @ Tj
V(BR)DSS @ 25 C
10
1.1
Maximum Repetitive Avalanche Current, IAR (A)
Tj prior to avalanche = 25 C
1.05
1
125 C
1
0.1
0.95
0.9
0.85
-100
PHP6N50E
0.01
1E-06
-50
0
50
Tj, Junction temperature (C)
100
150
1E-04
1E-03
1E-02
Avalanche time, tp (s)
Fig.15. Normalised drain-source breakdown voltage;
V(BR)DSS/V(BR)DSS 25 ˚C = f(Tj)
March 1999
1E-05
Fig.18. Maximum permissible repetitive avalanche
current (IAR) versus avalanche time (tp)
5
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
Avalanche energy rated
IRF830
MECHANICAL DATA
Plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220
E
SOT78
A
A1
P
q
D1
D
L1
L2(1)
Q
b1
L
1
2
e
e
3
c
b
0
5
10 mm
scale
DIMENSIONS (mm are the original dimensions)
(1)
UNIT
A
A1
b
b1
c
D
D1
E
mm
4.5
4.1
1.39
1.27
0.9
0.7
1.3
1.0
0.7
0.4
15.8
15.2
6.4
5.9
10.3
9.7
e
L
L1
2.54
15.0
13.5
3.30
2.79
L2
max.
P
q
Q
3.0
3.8
3.6
3.0
2.7
2.6
2.2
Note
1. Terminals in this zone are not tinned.
OUTLINE
VERSION
SOT78
REFERENCES
IEC
JEDEC
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
97-06-11
TO-220
Fig.19. SOT78 (TO220AB); pin 2 connected to mounting base (Net mass:2g)
Notes
1. This product is supplied in anti-static packaging. The gate-source input must be protected against static
discharge during transport or handling.
2. Refer to mounting instructions for SOT78 (TO220AB) package.
3. Epoxy meets UL94 V0 at 1/8".
March 1999
6
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
Avalanche energy rated
IRF830
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
 Philips Electronics N.V. 1999
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
March 1999
7
Rev 1.000