INFINEON BFP620

BFP620
NPN Silicon Germanium RF Transistor
3
4
• High gain low noise RF transistor
• Provides outstanding performance
for a wide range of wireless applications
2
• Ideal for CDMA and WLAN applications
• Outstanding noise figure F = 0.7 dB at 1.8 GHz
1
VPS05605
Outstanding noise figure F = 1.3 dB at 6 GHz
• Maximum stable gain
Gms = 21.5 dB at 1.8 GHz
Gma = 11 dB at 6 GHz
• Gold metallization for extra high reliability
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type
BFP620
Marking
R2s
1=B
Pin Configuration
2=E
3=C
4=E
-
Package
-
SOT343
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
Value
Unit
V
TA > 0 °C
2.3
TA ≤ 0 °C
2.1
Collector-emitter voltage
VCES
7.5
Collector-base voltage
VCBO
7.5
Emitter-base voltage
VEBO
1.2
Collector current
IC
80
Base current
IB
3
Total power dissipation1)
Ptot
185
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
T stg
-65 ... 150
mA
TS ≤ 95°C
1T is measured on the collector lead at the soldering point to the pcb
S
Thermal Resistance
Parameter
Symbol
Value
Unit
Junction - soldering point 1)
RthJS
≤ 300
K/W
1
Apr-21-2004
BFP620
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Parameter
Values
Unit
min.
typ.
max.
2.3
2.8
-
V
ICES
-
-
10
µA
ICBO
-
-
100
nA
IEBO
-
-
3
µA
hFE
110
180
270
DC Characteristics
Collector-emitter breakdown voltage
V(BR)CEO
IC = 1 mA, I B = 0
Collector-emitter cutoff current
VCE = 7.5 V, VBE = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
DC current gain
-
IC = 50 mA, VCE = 1.5 V, pulse measured
1For calculation of R
thJA please refer to Application Note Thermal Resistance
2
Apr-21-2004
BFP620
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Parameter
min.
typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
fT
-
65
-
Ccb
-
0.12
0.2
Cce
-
0.22
-
Ceb
-
0.46
-
Unit
GHz
IC = 50 mA, VCE = 1.5 V, f = 1 GHz
Collector-base capacitance
pF
VCB = 2 V, f = 1 MHz
Collector emitter capacitance
VCE = 2 V, f = 1 MHz
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz
Noise figure
dB
F
IC = 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = ZSopt
-
0.7
-
IC = 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = ZSopt
-
1.3
-
G ms
-
21.5
-
dB
G ma
-
11
-
dB
Power gain, maximum stable1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt , f = 1.8 GHz
Power gain, maximum available1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt, f = 6 GHz
|S21e|2
Transducer gain
IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
dB
-
20
-
-
9.5
-
IP 3
-
25
-
P-1dB
-
15
-
IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω,
f = 6 GHz
Third order intercept point at output2)
dBm
VCE = 2 V, I C = 50 mA, f = 1.8 GHz,
ZS = ZL = 50 Ω
1dB Compression point at output
IC = 50 mA, VCE = 2 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
1G
1/2
ma = |S21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e|
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
3
Apr-21-2004
BFP620
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transitor Chip Data:
IS =
VAF =
NE =
VAR =
NC =
RBM =
CJE =
TF =
ITF =
VJC =
TR =
MJS =
XTI =
AF =
TITF1
0.22
1000
2
2
2
2.707
250.7
1.43
2.4
0.6
0.2
0.5
3
fA
V
V
-
2
-0.0065
-
BF =
IKF =
BR =
IKR =
RB =
RE =
VJE =
XTF =
PTF =
MJC =
CJS =
NK =
FC =
KF =
TITF2
Ω
fF
ps
A
V
ns
-
425
0.25
50
10
3.129
0.6
0.75
10
0
0.5
128.1
-1.42
0.8
7.291E-11
1.0E-5
A
mA
Ω
V
deg
fF
-
NF =
ISE =
NR =
ISC =
IRB =
RC =
MJE =
VTF =
CJC =
XCJC =
VJS =
EG =
TNOM
1.025
21
1
18
1.522
2.364
0.3
1.5
124.9
1
0.52
1.078
298
fA
pA
mA
Ω
V
fF
V
eV
K
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit:
R C B S
C B C C
L C C
C
B F P 6 2 0 _ C h ip
S
B
B
L B B
L B C
C B E C
R C C S
E
L C B
R C E S
L E C
C B E I
C C E I
L E B
C B E O
T =
C C E O
2 5 ° C
Itf = 2 4 0 0 * ( 1 - 6 .5 e -3 * (T -2 5 ) + 1 .0 e -5 * (T -2 5 )^ 2 )
E
For examples and ready to use parameters
please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon
Technologies CD-ROM or see Internet:
http//www.infineon.com/silicondiscretes
C
LBC =
LCC =
LEC =
LBB =
LCB =
LEB =
CBEC =
CBCC =
CES =
CBS =
CCS =
CCEO =
CBEO =
CCEI =
CBEI =
RBS =
RCS =
RES =
60
50
15
764.5
725.4
259.6
98.4
55.9
140
54
50
106.5
106.7
132.4
99.6
1200
1200
300
pH
pH
pH
pH
pH
pH
fF
fF
fF
fF
fF
fF
fF
fF
fF
Ω
Ω
Ω
Valid up to 6GHz
4
Apr-21-2004
BFP620
Total power dissipation Ptot = ƒ(TS)
Permissible Pulse Load RthJS = ƒ(t p)
10 3
200
mW
160
K/W
RthJS
Ptot
140
120
D = 0.5
0.2
0.1
0.05
0.02
0.01
0.005
0
10 2
100
80
60
40
20
0
0
20
40
60
80
100
120 °C
10 1 -7
10
150
10
-6
10
-5
10
-4
10
-3
10
-2
°C
TS
10
0
tp
Permissible Pulse Load
Collector-base capacitance Ccb= ƒ(VCB)
Ptotmax/P totDC = ƒ(tp)
f = 1MHz
10 1
0.4
Ptotmax/ PtotDC
pF
CCB
0.3
D=0
0.005
0,01
0,02
0,05
0,1
0,2
0,5
0.25
0.2
0.15
0.1
0.05
10 0 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
°C
10
0
0
0
tp
1
2
3
4
5
V
7
VCB
5
Apr-21-2004
BFP620
Third order Intercept Point IP3=ƒ(IC)
Transition frequency fT= ƒ(IC)
(Output, ZS=ZL=50Ω)
f = 1GHz
VCE = parameter, f = 900MHz -
VCE = Parameter in V
27
dBm
55
1.8V
21
1.3 to 2.3
50
45
18
fT
IP3
65
GHz
2.3V
15
1.3V
1
40
35
30
12
0.8V
0.8
25
9
0.5
20
15
6
0.3
10
3
0
0
5
10
20
30
40
50
60
70
80 mA
0
0
100
10
20
30
40
50
60
70
80 mA
IC
100
IC
Power gain Gma, Gms = ƒ(IC)
Power Gain Gma, Gms = ƒ(f),
VCE = 1.5V
|S21|² = f (f)
f = Parameter in GHz
VCE = 1.5V, I C = 50mA
55
30
dB
dB
0.9
26
45
24
40
22
G
G
1.8
35
20
30
2.4
18
3
16
20
14
4
12
6
10
20
30
40
50
60
70 mA
Gma
|S21|²
15
5
10
8
0
Gms
25
10
5
0
90
IC
1
2
3
4
GHz
6
f
6
Apr-21-2004
BFP620
Power gain Gma, Gms = ƒ (VCE)
IC = 50mA
f = Parameter in GHz
30
0.9
dB
1.8
2.4
20
G
3
4
5
6
15
10
5
0
-5
0.2
0.6
1
1.4
1.8
V
2.6
VCE
7
Apr-21-2004