INFINEON BFR360

BFR360F
NPN Silicon RF Transistor
Preliminary data
Low voltage/ low current operation
2
3
For low noise amplifiers
For Oscillators up to 3.5 GHz and Pout > 10 dBm
1
Low noise figure: 1.0 dB at 1.8 GHz
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type
BFR360F
Marking
FBs
Pin Configuration
1=B
2=E
3=C
Package
TSFP-3
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
6
Collector-emitter voltage
VCES
15
Collector-base voltage
VCBO
15
Emitter-base voltage
VEBO
2
Collector current
IC
35
Base current
IB
4
Total power dissipation1)
Ptot
210
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
Tstg
-65 ... 150
V
mA
TS 98°C
Thermal Resistance
Parameter
Symbol
Value
Unit
Junction - soldering point2)
RthJS
250
K/W
1T is measured on the collector lead at the soldering point to the pcb
S
2For calculation of R
please refer to Application Note Thermal Resistance
thJA
1
Jun-16-2003
BFR360F
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
V(BR)CEO
6
9
-
V
ICES
-
-
10
µA
ICBO
-
-
100
nA
IEBO
-
-
1
µA
hFE
60
130
200
Characteristics
Collector-emitter breakdown voltage
IC = 1 mA, IB = 0
Collector-emitter cutoff current
VCE = 15 V, VBE = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 1 V, IC = 0
DC current gain-
-
IC = 15 mA, VCE = 3 V
2
Jun-16-2003
BFR360F
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
11
14
-
Ccb
-
0.32
0.5
Cce
-
0.2
-
Ceb
-
0.4
-
Fmin
-
1
-
-
15.5
-
-
11
-
AC Characteristics (verified by random sampling)
Transition frequency
fT
GHz
IC = 15 mA, VCE = 3 V, f = 1 GHz
Collector-base capacitance
pF
VCB = 5 V, f = 1 MHz, emitter grounded
Collector emitter capacitance
VCE = 5 V, f = 1 MHz, base grounded
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, collector grounded
Noise figure
dB
IC = 3 mA, VCE = 3 V, ZS = ZSopt,
f = 1.8 GHz
Power gain, maximum available1)
Gma
IC = 15 mA, VCE = 3 V, ZS = ZSopt ,
ZL = ZLopt , f = 1.8 GHz
IC = 15 mA, VCE = 3 V, ZS = ZSopt ,
ZL = ZLopt , f = 3 GHz
|S21e|2
Transducer gain
dB
IC = 15 mA, VCE = 3 V, ZS = ZL = 50 ,
f = 1.8 GHz
-
13
-
IC = 15 mA, VCE = 3 V, ZS = ZL = 50 ,
f = 3 GHz
-
9
-
IP3
-
24
-
P-1dB
-
9
-
Third order intercept point at output 2)
dBm
VCE = 3 V, IC = 15 mA, f = 1.8 GHz,
ZS = ZL = 50
1dB Compression point at output
IC = 15 mA, VCE = 3 V, ZS = ZL = 50 ,
f = 1.8 GHz
1G
1/2
ma = |S21e / S12e | (k-(k²-1) )
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50 from 0.1 MHz to 6 GHz
3
Jun-16-2003
BFR360F
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transitor Chip Data:
IS =
VAF =
NE =
VAR =
NC =
RBM =
CJE =
TF =
ITF =
VJC =
TR =
MJS =
XTI =
AF =
0.0689
20
2.4
60
1.4
7.31
400
9.219
1.336
0.864
1.92
0
0
fA
V
BF =
IKF =
BR =
IKR =
RB =
RE =
VJE =
XTF =
PTF =
MJC =
CJS =
XTB =
FC =
KF =
V
-
fF
ps
mA
V
ns
-
1
147
77.28
6
0.3
0.1
78.2
1.3
0.115
0
0.486
0
0.5
0.954
1E-14
mA
A
m
V
deg
fF
K
NF =
ISE =
NR =
ISC =
IRB =
RC =
MJE =
VTF =
CJC =
XCJC =
VJS =
EG =
NK =
1
150
1
20
75
0.35
0.5
0.198
473
0.129
0.75
1.11
0.5
fA
fA
µA
L1 =
L2 =
L3 =
C1 =
C2 =
C3 =
C4 =
C5 =
C6 =
0.556
0.657
0.381
43
123
66
10
36
47
nH
nH
nH
fF
fF
fF
fF
fF
fF
V
fF
V
eV
K
-
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit:
C4
C1
L2
B
Transistor
Chip
B’
C’
L3
C
E’
C6
C2
L1
C5
C3
E
Valid up to 6GHz
EHA07524
For examples and ready to use parameters
please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon
Technologies CD-ROM or see Internet:
http//www.infineon.com/silicondiscretes
4
Jun-16-2003
BFR360F
Total power dissipation Ptot = (TS )
Permissible Pulse Load RthJS = (tp )
10 3
240
mW
K/W
RthJS
P tot
180
150
10 2
120
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
90
60
30
0
0
15
30
45
60
75
90 105 120 °C
10 1 -7
10
150
10
-6
10
-5
10
-4
10
-3
10
-2
TS
s
10
0
tp
Permissible Pulse Load
Collector-base capacitance Ccb = (VCB )
Ptotmax/PtotDC = (tp)
f = 1MHz
10 1
0.8
Ptotmax/PtotDC
pF
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
Ccb
0.6
0.5
0.4
0.3
0.2
0.1
10 0 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
0
0
tp
2
4
6
8
10
12
V
16
VCB
5
Jun-16-2003
BFR360F
Third order Intercept Point IP3=(IC)
Transition frequency fT = (IC)
(Output, ZS=ZL=50)
f = 1GHz
VCE = parameter, f = 1.8GHz
VCE = parameter
30
17
GHz
dBm
14
5V
20
12
fT
IP 3
3V
15
10
2V
8
10
6V
4V
3V
2V
1V
5
1V
6
4
0
-5
0
0.7V
2
5
10
15
20
25
30
mA
0
0
40
5
10
15
20
25
30
IC
mA
40
IC
Power gain Gma, Gms = (IC )
Power gain Gma, Gms = (IC)
f = 0.9GHz
f = 1.8GHz
VCE = parameter
VCE = parameter
18
24
dB
5V
dB
22
5V
3V
21
2V
3V
G
G
20
19
14
2V
18
1V
17
12
1V
16
15
0.7V
10
14
0.7V
13
12
0
5
10
15
20
25
30
mA
8
0
40
IC
5
10
15
20
25
30
mA
40
IC
6
Jun-16-2003
BFR360F
Power Gain Gma , Gms = (f)
Insertion Power Gain |S21|² = (f)
VCE = parameter
VCE = parameter
49
36
dB
dB
Ic = 15mA
Ic = 15mA
34
24
5V
2V
1V
0.7V
G
28
G
39
29
20
24
16
19
12
9
5V
2V
1V
0.7V
4
0
0.5
14
8
4
1
1.5
2
2.5
3.5 GHz
3
0
0
4.5
0.5
1
1.5
2
2.5
3
f
Power gain Gma, Gms = (IC )
| S21|² = (VCE): - - - -
VCE = 3V
f = parameter
f = parameter
24
22
dB
Ic = 15mA
0.9GHz
0.9GHz
19
0.9GHz
20
18
17
18
1.8GHz
G
G
4.5
f
Power Gain Gma , Gms = (VCE ): dB
3.5 GHz
16
15
16
1.8GHz
14
1.8GHz
14
13
2.4GHz
12
11
12
3GHz
10
9
10
4GHz
8
8
0
1
2
3
4
5
V
7
0
7
VCE
5
10
15
20
25
30
35 mA
45
IC
7
Jun-16-2003
BFR360F
Noise figure NF = (IC )
VCE = 3V, f = 1,8 GHz
Source impedance for min.
noise figure vs. frequency
VCE = 3 V
dB
3
+j50
F50
+j25
+j100
2.4
2.2
+j10
NFmin
F
2
1.8
2.4GHz
1.8GHz
3GHz
1.6
0
10
1.4
25
50
0.9GHz
100
4GHz
1.2
1
3mA
15mA
-j10
0.8
0.6
-j25
0.4
-j50
0.2
0
0
-j100
5
10
15
20
25
30
35 mA
45
IC
8
Jun-16-2003