TYPICAL PERFORMANCE CURVES ® 1200V APT25GN120B_S(G) APT25GN120B APT25GN120S APT25GN120BG* APT25GN120SG* *G Denotes RoHS Compliant, Pb Free Terminal Finish. Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low VCE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. A built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. Low gate charge simplifies gate drive design and minimizes losses. (B) TO -2 D3PAK 47 (S) C G G C E E • 1200V Field Stop • Trench Gate: Low VCE(on) • Easy Paralleling • Integrated Gate Resistor: Low EMI, High Reliability C G E Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT25GN120B(G) VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 67 I C2 Continuous Collector Current @ TC = 110°C 33 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 75 Switching Safe Operating Area @ TJ = 150°C 75A @ 1200V Total Power Dissipation 272 Operating and Storage Junction Temperature Range Watts -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 150µA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES RG(int) MAX 5 5.8 6.5 1.4 1.7 2.1 Units 1200 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C) 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) Volts 1.9 Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) TYP 100 2 600 Gate-Emitter Leakage Current (VGE = ±20V) 8 Integrated Gate Resistor CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com µA TBD nA Ω 11-2005 V(BR)CES MIN Rev D Characteristic / Test Conditions 050-7600 Symbol APT25GN120B_S(G) DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge td(on) tr td(off) tf Eon1 Eon2 tr td(off) tf A ns TBD mJ 1490 2150 Inductive Switching (125°C) 22 VCC = 800V 17 VGE = 15V 335 RG = 1.0Ω 7 225 TBD I C = 150A Current Fall Time 44 Turn-on Switching Energy (Diode) nC 135 TJ = +25°C Turn-off Delay Time Turn-on Switching Energy V 280 6 Eon2 pF 75 RG = 1.0Ω 7 5 UNIT 85 17 4 MAX 10 VCC = 800V Current Rise Time Turn-off Switching Energy 155 I C = 150A Eon1 Eoff 9.5 VGE = 15V VGE = 15V Turn-on Switching Energy (Diode) Turn-on Delay Time Gate Charge 22 Current Fall Time td(on) 85 Inductive Switching (25°C) Turn-off Delay Time Turn-off Switching Energy 105 f = 1 MHz 15V, L = 100µH,VCE = 1200V Current Rise Time Eoff VGE = 0V, VCE = 25V TJ = 150°C, R G = 4.3Ω 7, VGE = Turn-on Delay Time Turn-on Switching Energy 1800 I C = 150A Switching Safe Operating Area TYP Capacitance VCE = 600V Qge SSOA MIN 55 TJ = +125°C ns mJ 2390 66 3075 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .46 RθJC Junction to Case (DIODE) N/A WT Package Weight 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 050-7600 Rev D 11-2005 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 15V IC, COLLECTOR CURRENT (A) 40 10V 30 9V 20 8V 10 7V 0 FIGURE 1, Output Characteristics(TJ = 25°C) 60 TJ = 125°C 45 TJ = 25°C 30 TJ = -55°C 15 0 0 10V 30 9V 20 8V 10 7V 0 5 10 15 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 250µs PULSE TEST<0.5 % DUTY CYCLE 11V 40 0 0 5 10 15 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 12V 50 J VCE = 240V 12 VCE = 600V 10 VCE = 960V 8 6 4 2 0 2 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 25A C T = 25°C 14 0 20 IC = 50A 3 2.5 IC = 25A 2 1.5 IC = 12.5A 1.0 0.5 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 1.00 3 IC = 50A 2.5 2 IC = 25A 1.5 IC = 12.5A 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 90 1.10 1.05 60 80 100 120 140 160 180 GATE CHARGE (nC) FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.5 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4 40 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 11-2005 11V 50 60 Rev D IC, COLLECTOR CURRENT (A) 12V 60 75 15V 70 050-7600 70 APT25GN120B_S(G) 80 80 VGE = 15V 20 15 10 VCE = 800V TJ = 25°C, or 125°C RG = 4.3Ω L = 100µH 5 0 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 25 45 25 20 15 TJ = 25 or 125°C,VGE = 15V tf, FALL TIME (ns) tr, RISE TIME (ns) 30 10 15 20 25 30 35 40 45 50 55 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 7000 VCE = 800V RG = 4.3Ω L = 100µH 50 RG = 4.3Ω, L = 100µH, VCE = 800V TJ = 125°C, VGE = 15V 200 150 TJ = 25°C, VGE = 15V 100 7000 V = 800V CE V = +15V GE R = 4.3Ω 6000 G TJ = 125°C 5000 10 15 20 25 30 35 40 45 50 55 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 100 0 0 4000 3000 2000 1000 TJ = 25°C 0 Eon2,50A J 10000 Eoff,50A 8000 6000 4000 Eoff,25A Eon2,25A 2000 Eoff,12.5A Eon2,12.5A 0 G TJ = 125°C 5000 4000 3000 2000 TJ = 25°C 1000 7000 V = 800V CE V = +15V GE T = 125°C 12000 6000 10 15 20 25 30 35 40 45 50 55 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) 14000 V = 800V CE V = +15V GE R = 4.3Ω 0 10 15 20 25 30 35 40 45 50 55 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (µJ) 150 50 5 11-2005 VGE =15V,TJ=25°C 200 250 10 Rev D 250 300 35 050-7600 VGE =15V,TJ=125°C 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current RG = 4.3Ω, L = 100µH, VCE = 800V 40 300 0 10 15 20 25 30 35 40 45 50 55 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 APT25GN120B_S(G) 350 30 V = 800V CE V = +15V GE R = 4.3Ω 6000 Eoff,50A G 5000 4000 Eon2,50A 3000 Eoff,25A 2000 Eon2,25A Eoff,12.5A 1000 0 0 Eon2,12.5A 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) Cies 1,000 APT25GN120B_S(G) 80 4,000 500 100 Coes 50 Cres 70 60 50 40 30 20 10 0 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area D = 0.9 0.40 0.7 0.30 0.5 Note: 0.20 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.50 0.3 t2 0.10 SINGLE PULSE 0.1 0 t1 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.05 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.00826 0.169 0.353 Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 10 F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf T = 125°C J T = 75°C C D = 50 % V = 800V CE R = 4.3Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 5 10 15 20 25 30 35 40 45 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 11-2005 0.0536 Power (watts) 50 Rev D Junction temp. (°C) 100 050-7600 RC MODEL FMAX, OPERATING FREQUENCY (kHz) 140 APT25GN120B_S(G) Gate Voltage 10% APT30DQ120 TJ = 125°C td(on) IC V CC 90% V CE Collector Current tr A 5% 10% 5% CollectorVoltage Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C CollectorVoltage td(off) 90% tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions 3 TO-247 Package Outline D PAK Package Outline e1 SAC: Tin, Silver, Copper 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) Revised 4/18/95 20.80 (.819) 21.46 (.845) Collector 11-2005 Rev D 050-7600 5.38 (.212) 6.20 (.244) Collector (Heat Sink) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) e3 SAC: Tin, Silver, Copper 1.04 (.041) 1.15(.045) 13.41 (.528) 13.51(.532) 13.79 (.543) 13.99(.551) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.50 (.138) 3.81 (.150) 0.46 (.018) 0.56 (.022) {3 Plcs} 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 2.21 (.087) 2.59 (.102) 19.81 (.780) 20.32 (.800) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} Emitter Collector Gate Dimensions in Millimeters (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads are Plated