PHILIPS UMA1014

INTEGRATED CIRCUITS
DATA SHEET
UMA1014
Low-power frequency synthesizer
for mobile radio communications
Product specification
Supersedes data of October 1991
File under Integrated circuits, IC03
October 1992
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
FEATURES
• Single chip synthesizer; compatible with Philips cellular
radio chipset
• Fully programmable RF divider
• I2C interface for two-line serial bus
• On-chip crystal oscillator/TCXO buffer from 3 to 16 MHz
GENERAL DESCRIPTION
• 16 reference division ratios allowing 5 to 100 kHz
channel spacing
The UMA1014 is a low-power universal synthesizer which
has been designed for use in channelized radio
communication. The IC is manufactured in bipolar
technology and is designed to operate at 5 to 100 kHz
channel spacing with an RF input from 50 to 1100 MHz.
The channel is programmed via a standard I2C-bus. A
low-power sensitive RF divider is incorporated together
with a dead-zone eliminated, 3-state phase comparator.
The low-noise charge pump delivers 1 mA or 1/2 mA
output current to enable a better compromise between fast
switching and loop bandwidth. A power-down circuit
enables the synthesizer to be set to idle mode.
• 1/8 crystal frequency output
• On-chip out-of-lock indication
• Two extra VCO control outputs
• Latched synthesizer alarm output
• Status register including out-of-lock indication and
power failure
• Power-down mode.
APPLICATIONS
• Cellular mobile radio (NMT, AMPS, TACS)
• Private mobile radio (PMR)
• Cordless telephones.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC, VCP
supply voltage range
4.5
5.0
5.5
V
ICC + ICP
supply current
−
13
−
mA
ICCpd
ICC in power-down
−
2.5
−
mA
fref
phase comparator reference frequency
5
−
100
kHz
fRF
RF input frequency
50
−
1100
MHz
Tamb
operating ambient temperature range
−40
−
85
°C
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
UMA1014T
October 1992
NAME
DESCRIPTION
VERSION
SO16
plastic small outline package; 16 leads; body width 3.9 mm
SOT109-1
2
16
14
3
1
oscillator input
2
8
31/32
RF input
3
hardware
power-down
slave address
select input A
UMA1014
BUFFER/
OSCILLATOR
MAIN
DIVIDER
REFERENCE
DIVIDER
PHASE
COMPARATOR
CHARGE
PUMP
18-BITS
4-BITS
1-BIT
1-BIT
5
11
MAIN
CONTROL
12
15
9
10
7
charge
pump
output
OUT-OFLOCK
3-BITS
13
MRA396 - 1
VCO buffer switch output B
VCO buffer switch output A
synthesizer
alarm
output
serial data input/output
serial clock input
Product specification
Fig.1 Block diagram.
UMA1014
handbook, full pagewidth
oscillator output
Philips Semiconductors
6
+5 V charge
pump supply
Low-power frequency synthesizer for
mobile radio communications
4
1/8 crystal
frequency internally
output
connected
ground
BLOCK DIAGRAM
October 1992
+5 V supply
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
PINNING
SYMBOL
PIN
DESCRIPTION
OSCIN
1
oscillator or TCXO input
OSCOUT
2
oscillator output
VCP
3
5 V charge pump supply
VCC
4
5 V supply
PCD
5
charge pump output
GND
6
ground
VCOA
7
VCO buffer switch output A
(including out-of-lock)
RF
8
RF input
SCL
9
serial clock input
SDA
10
serial data input/output
HPD
11
hardware power-down (active LOW)
SAA
12
slave address select input A
VCOB
13
VCO buffer switch output B
i.c.
14
internally connected
SYA
15
synthesizer alarm output
FX8
16
1/8 crystal frequency output
October 1992
handbook, halfpage
OSCIN
1
16
FX8
OSCOUT
2
15
SYA
VCP
3
14
i.c.
VCC
4
13
VCOB
PCD
5
12
SAA
GND
6
11
HPD
VCOA
7
10
SDA
RF
8
9
SCL
UMA1014
MRA397 - 1
Fig.2 Pin configuration.
4
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
FUNCTIONAL DESCRIPTION
Reference divider
The UMA1014 is a low-power frequency synthesizer for
radio communication which operates in the
50 to 1100 MHz range. The device includes an
oscillator/buffer circuit, a reference divider, an RF divider,
a 3-state phase comparator, a charge pump and a main
control circuit to transfer the serial data into the four
internal 8-bit registers. The VCC supply feeds the logic part,
the VCP supply feeds the charge-pump only. Both supplies
are +5 V (±10%). The power-down facility puts the
synthesizer in the idle mode (all current supplies are
switched off except in the control part). This allows any I2C
transfer and all information in the registers is retained thus
enabling fast power-up.
The reference divider is semi-programmable with 16
division ratios which can be selected via the I2C-bus. The
programming uses four bits of the register A (A3 to A0) as
listed in Table 2. These ratios allow the use of a large
number of crystal frequencies from 3 MHz up to 16 MHz.
All main channel spacings can be obtained with a single
crystal/TXCO frequency of 9.6 MHz.
Phase comparator
A diagram of the phase comparator and charge pump is
illustrated in Fig.3.
The phase comparator is both a phase and frequency
detector. The detector comprises dual flip-flops together
with logic circuitry to eliminate the dead-zone. When a
phase error is detected the UP or DOWN signal goes
HIGH. This switches on the corresponding current
generator which produces a source or sink current for the
loop filter. When no phase error is detected PCD goes high
impedance. The final tuning voltage for the VCO is
provided by the loop filter. The charge pump current is
programmable via the I2C-bus. When IPCD (bit 5) is set to
logic 1 the charge pump delivers 1 mA; when IPCD is set
to logic 0 the charge pump delivers 0.5 mA.
Main divider
The main divider is a pulse swallow type counter which is
fully programmable. After a sensitive input amplifier
(50 mV, −13 dBm), the RF signal is applied to a 31/32
duo-modulus counter. The output is then used as the clock
for the 5-bit swallow counter R = (MD4 to MD0) and the
13-bit main counter N = (MD17 to MD5). The ratio is
transferred via the I2C-bus to the registers B, C and D, and
then buffered in an 18-bit latch. The ratio in the divider
chain is updated with the new information when the least
significant bit is received (i.e. D0). This update is
synchronized to the output of the divider in order to limit the
phase error during small jumps of the synthesized
frequency.
The phase comparator has a phase inverter logic input
(PHI). This allows the use of inverted or non-inverted loop
filter configurations. It is thus possible to use a passive
loop filter which offers higher performances without an
operational amplifier. The function of the phase
comparator is given in Table 3 and a typical transfer curve
is illustrated in Fig.4.
The main divider can be programmed to any value
between 2048 and 262143 (i.e. 218 −1). If ratio X, below
2048, is sent to the divider, the ratio (X + 2048) will be
programmed. When it is required to switch between
adjacent channels it is possible to program register D only,
thus allowing shorter I2C programming time.
Out-of-lock detector
An out-of-lock detector using the UP and DOWN signals
from the phase comparator is included on-chip. The pin
VCOA is an open collector output which is forced LOW
during an out-of-lock condition. The same information is
also available via the I2C-bus in the status register (bit
OOL). When the phase error (measured at the phase
comparator) is greater than approximately 200 ns, an
out-of-lock condition is immediately flagged. The flag is
only released after 6 reference cycles when the phase
error is less than 200 ns.
Oscillator
The oscillator is a common collector Colpitts type with
external capacitive feedback. The oscillator has very small
temperature drift and high voltage supply rejection. A
TCXO or other type of clock can be used to drive the
oscillator by connecting the source (preferably
AC-coupled) to pin 1 and leaving pin 2 open-circuit. The
oscillator acts as a buffer in this mode and requires no
additional external components. The signal from the clock
source should have a minimum space width of 31 ns.
October 1992
5
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
Table 1
UMA1014
Division ratio in the main divider
MAIN COUNTER: N
SWALLOW COUNTER: R
MD17
MD16
MD15
...
MD8
MD7
...
MD5
MD4
...
MD0
B1
B0
C7
...
C0
D7
...
D5
D4
...
D0
MSB
Table 2
LSB
Reference divider programming
A3(RD3) A2(RD2) A1(RD1) A0(RD0)
REFERENCE DIVISION
RATIO
CHANNEL SPACING FOR 9.6 MHz AT
OSCIN
0
0
0
0
128
75 kHz
0
0
0
1
160
60 kHz
0
0
1
0
192
50 kHz
0
0
1
1
240
40 kHz
0
1
0
0
256
37.5 kHz
0
1
0
1
320
30 kHz
0
1
1
0
384
25 kHz
0
1
1
1
480
20 kHz
1
0
0
0
512
18.75 kHz
1
0
0
1
640
15 kHz
1
0
1
0
768
12.5 kHz
1
0
1
1
960
10 kHz
1
1
0
0
1024
9.375 kHz
1
1
0
1
1280
7.5 kHz
1
1
1
0
1536
6.25 kHz
1
1
1
1
1920
5 kHz
Table 3
Operation of the phase comparator
PHI = 0 (PASSIVE LOOP FILTER)
UP
PHI = 1 (ACTIVE LOOP FILTER)
fref < fvar
fref > fvar
fref = fvar
fref < fvar
fref > fvar
fref = fvar
0
1
0
1
0
0
DOWN
1
0
0
0
1
0
Ipcd
−1 mA
1 mA
< ±5 nA
1 mA
−1 mA
< ±5 nA
October 1992
6
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
//slave addr./subaddr./data1/data2/.../datan//; n up to 4
(AVI = 1), then provides the correct addressing for the
ensuing data bytes. Since the length of the data burst is
not fixed, it is possible to program only one register or the
whole set. The registers are structured in such a way so
that the burst, for normal operation, is kept as short as
possible. The bits that are only programmed during the
set-up (reference division ratio, power-down, phase
inversion and current on PCD) are stored in registers A
and B.
Data byte 1 is written in the register indicated by the
subaddress. An auto-increment circuit, if enabled
In the slave address six bits are fixed, the remaining two
bits depend on the application.
MAIN CONTROL
I2C-bus
The control part consists mainly of the
control
interface and a set of four registers A, B, C and D. The
serial input data (SDA) is converted into 8-bit parallel
words and stored in the appropriate registers. The data
transmission to the synthesizer is executed in the burst
mode with the following format:
Table 4
Slave address
1
1
0
0
0
SAA is the slave address. When SAA goes HIGH then
SAA = 0, when SAA goes LOW then SAA = 1. This allows
the use of two UMA1014s on the same bus but using a
different address. R/W should be set to logic 0 when
writing to the synthesizer or set to logic 1 when reading the
status register.
Table 5
1
SAA
The subaddress includes the register pointer, and sets the
two flags related to the auto-increment (AVI) and the alarm
disable (DI).
Subaddress
X
X
X
DI
AVI
Where:
X
SB1
When the auto-increment is disabled (AVI = 0), the
subaddress pointer will maintain the same value during the
I2C-bus transfer. All the data bytes will then be written
consecutively in the register pointed by the subaddress.
DI (Disable Interrupt):
DI = 1 disables the alarm on SYA
DI = 0 enables the alarm.
AVI (Auto Value Increment):
AVI = 1 enables the automatic increment
AVI = 0 disables the auto-increment.
Pointer of the registers
SB1
SB0
REGISTER POINTED
0
0
A
0
1
B
1
0
C
1
1
D
October 1992
SB0
SB1/SB0 are the pointers of the register where DATA1 will
be written (see Table 6).
X = not used
Table 6
R/W
7
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
Status register and synthesizer alarm
When an out-of-lock condition or a power dip occurs,
SYA, which is an open collector output, is forced LOW
and latched. The pin SYA will be released after the status
register is read via the I2C-bus.
The status register contains the following information:
Table 7
Status register
0
0
0
OOL
0
LOOL
LPD
DI
Where:
OOL = momentary out-of-lock
LOOL = latched out-of-lock
LPD = latched power dip
DI = disable interrupt (of the last write cycle).
The I2C-bus protocol to read this internal register is a single byte without subaddressing:
//slave address (R/W = 1)/status register (read)//
Table 8
Bit allocation
REGISTER
POINTER
BIT ALLOCATION
7
6
5
4
PRESET
3
2
1
0
A
00
PD
X
IPCD
X
RD3
RD2
RD1
RD0
00001110
B
01
1
0
1
PHI
VCOB
VCOA
MD17
MD16
10100101
C
10
MD15
MD14
MD13
MD12
MD11
MD10
MD9
MD8
00111000
D
11
MD7
MD6
MD5
MD4
MD3
MD2
MD1
MD0
10000000
Where X = not used
Table 9
Register allocation
REGISTER
NAME
A
BIT NAME
PRESET
VALUE
FUNCTION
PD
power down
PD = 0 normal operation
0
IPCD
programmable charge
pump current
IPCD = 1 = 1 mA;
IPCD = 0 = 0.5 mA
0
RD3...RD0
reference ratio
see Table 2
1110; r = 1536
PHI
phase inverter
PHI = 0 passive loop filter
0
VCOA
VCO switch A
set pin 7
1
VCOB
VCO switch B
set pin 13
0
MD17, MD16
bits 17 and 16
MSB of main divider ratio
01
C
MD15 to MD8
bits 15 to 8
main divider ratio
00111000
D
MD7 to MD0
bits 7 to 0
main divider ratio
10000000;
r = 80000
B
October 1992
8
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
V CP
handbook, full pagewidth
f var
on/off
1 mA
(source)
UP
PHASE
COMPARATOR
PCD
f ref
on/off
1 mA
(sink)
DOWN
PHI
MRA399
Fig.3 Phase comparator block diagram.
LIMITING VALUES
In accordance with the Absolute Maximum System (IEC 134).
SYMBOL
PARAMETER
VCC
supply voltage range
MIN.
−0.3
MAX.
UNIT
7.0
V
Vi
voltage range to ground (all pins)
0
VCC
V
Tstg
IC storage temperature range
−55
+125
°C
Tamb
operating ambient temperature range
−40
+85
°C
HANDLING
Every pin referenced to ground withstands ESD (HMB) tests in accordance with MIL-STD-883C method 3015 class 2.
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling Integrated Circuits.
October 1992
9
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
CHARACTERISTICS
Tamb = 25 °C; VCC = 4.5 to 5.5 V; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supply (pins VCC and VCP)
VCC
supply voltage range
4.5
−
5.5
V
ICC
supply current
−
11.5
13.5
mA
ICCpd
supply current
−
2.5
3.3
mA
VCP
charge pump supply voltage
4.5
−
5.5
V
ICP
charge pump supply current
IPCD = 0.5 mA
−
1.4
1.8
mA
ICPpd
charge pump supply current
power-down
−
0.01
−
mA
power-down
RF dividers (pin RF)
fRF
frequency range
VRF(rms)
input voltage level (RMS value)
RI
input resistance
CI
input capacitance
RRF
division ratios
50
−
1100
MHz
50 to 100 MHz
150
−
200
mV
100 to 1100 MHz
50
−
150
mV
at 1 GHz
−
200
−
Ω
at 100 MHz
−
600
−
Ω
note 1
−
2.0
−
pF
2048
−
262143
−
−
16
MHz
Oscillator and reference divider (pins OSCIN and OSCOUT)
fOSC
oscillator frequency range
3
VOSC(RMS)
input level sine wave (RMS value)
0.15
−
VCC/2.8
V
VOSC(p-p)
input level square wave
(peak-to-peak value)
0.45
−
VCC
V
tOSC_mk
input mark width
10
−
−
ns
tOSC_sp
input space width
31
−
−
ns
ZOSC
output impedance at pin
OSCOUT
−
−
2
kΩ
Rref
reference division ratio
128
−
1920
1.0
−
−
mA
5
−
100
kHz
0.9
1.2
1.4
mA
see Fig.8
see Table 1
1/8 crystal frequency (open collector output) (pin FX8)
IOL
LOW level output current
VOL ≥ 0.6 V
Phase comparator (pin PCD)
fPCD
frequency range
IPCD
output current
VPCD = 2.5 V
bit IPCD = 1
0.45
0.6
0.75
mA
IPCDL
output leakage current
bit IPCD = 0
−5
±1
+5
nA
VPCD
output voltage
0.4
−
VCP−0.5
V
October 1992
10
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
SYMBOL
PARAMETER
UMA1014
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Serial clock and serial data input (pins SCL and SDA)
fCLK
clock frequency
0
−
100
kHz
VIH
HIGH level input voltage
3
−
−
V
VIL
LOW level input voltage
−
−
1.5
V
IIH
HIGH level input current
−
3
10
µA
IIL
LOW level input current
−10
−5
−
µA
CI
input capacitance
−
−
10
pF
Isink
SDA sink current
3
−
−
mA
VOL = 0.4 V
Slave address select input (pin SAA) and Hardware power-down input (pin HPDN)
VIH
HIGH level input voltage
3
−
−
V
VIL
LOW level input voltage
−
−
0.4
V
IIH
HIGH level input current
−
−
0.1
µA
IIL
LOW level input current
−10
−
−
µA
−
µA
VCO output switches (pins VCOA and VCOB) and synthesizer alarm (pin SYA); note2
IOL
VOL ≥ 0.4 V
LOW level sink current
400
−
Notes
1. CI is in parallel with RI.
2. Pin VCOA is forced to logic 0 during out-of-lock condition.
MRA400
I PCD = 1 mA
2.0
I
(µA)
I PCD = 0.5 mA
1.0
0
-1.0
-2.0
-20
0
20
phase difference (t = ns)
The current IPCD is averaged over a reference period of 24 µs.
Fig.4 Gain of phase detector and charge pump.
October 1992
11
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
UP or DOWN
REF
OOL
VCOA
MRA401
Fig.5 Out-of-lock function.
200
RF input
(mV RMS)
guaranteed area
of operation
100
typical RF
sensitivity
o
(Tamb = 25 C)
0
50
100
200
500
1100
1200
f RF (MHz)
MRA402 - 1
Fig.6 RF input high frequency sensitivity.
October 1992
1000
12
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
200
RF input
(mV RMS)
150
guaranteed area
100
of operation
50
typical RF
sensitivity
(Tamb = 25 oC)
0
50
100
150
200
f RF (MHz)
MRA403 - 1
Fig.7 RF input low frequency sensitivity.
handbook, halfpage
OSCIN
t OSC mk
t OSC sp
MLA436 - 1
Fig.8 Oscillator input timing.
October 1992
13
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
APPLICATION INFORMATION
VCC
G1
9.6 MHz
R10
10 k Ω
C13
120 pF
1
16
2
15
3
14
4
13
C12
68 pF
C8
2-20 pF
C11
39 pF
VCP
+ C9
R7
68 Ω
47 µ F
VCC
+
R8
12 Ω
C10
47 µ F
VCC
10 kΩ
UMA 1014
5
12
VCC
10 kΩ
low
current
LED
7
10
8
9
+
100 nF
C5
47 µ F
C6
1 nF
R6
18 Ω
VOLTAGE
CONTROLLED
OSCILLATOR
870 to 910
MHz
R5
18 Ω
C17
1 nF
MRA404 - 1
RF output
R4
18 Ω
SCL
R11
56 Ω
R1
18 k Ω
control voltage
C3
180 nF
C1
33 nF
C2
2.2 nF
R2
10 kΩ
ETACS application for:
VCO sensitivity = 11 MHz/V.
Channel spacing = 12.5 kHz.
Fig.9 Typical cellular mobile radio application.
October 1992
SDA
V3
R3
12 Ω
modulation
input
11
R9
3.9 kΩ
VCC
VCC
6
14
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
PACKAGE OUTLINE
SO16: plastic small outline package; 16 leads; body width 3.9 mm
SOT109-1
D
E
A
X
c
y
HE
v M A
Z
16
9
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
1
L
8
e
0
detail X
w M
bp
2.5
5 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
Z (1)
mm
1.75
0.25
0.10
1.45
1.25
0.25
0.49
0.36
0.25
0.19
10.0
9.8
4.0
3.8
1.27
6.2
5.8
1.05
1.0
0.4
0.7
0.6
0.25
0.25
0.1
0.7
0.3
0.01
0.019 0.0100 0.39
0.014 0.0075 0.38
0.16
0.15
0.244
0.050
0.041
0.228
0.039
0.016
0.028
0.020
inches
0.010 0.057
0.069
0.004 0.049
0.01
0.01
0.028
0.004
0.012
θ
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT109-1
076E07S
MS-012AC
October 1992
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
95-01-23
97-05-22
15
o
8
0o
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering
technique should be used.
SOLDERING
Introduction
• The longitudinal axis of the package footprint must be
parallel to the solder flow.
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
• The package footprint must incorporate solder thieves at
the downstream end.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “IC Package Databook” (order code 9398 652 90011).
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
Reflow soldering
Reflow soldering techniques are suitable for all SO
packages.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Repairing soldered joints
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250 °C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
Wave soldering
Wave soldering techniques can be used for all SO
packages if the following conditions are observed:
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of this specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not from part of the specification.
October 1992
16
Philips Semiconductors
Product specification
Low-power frequency synthesizer for
mobile radio communications
UMA1014
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
PURCHASE OF PHILIPS I2C COMPONENTS
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the
components in the I2C system provided the system conforms to the I2C specification defined by
Philips. This specification can be ordered using the code 9398 393 40011.
October 1992
17