2N3958 Vishay Siliconix Monolithic N-Channel JFET Dual PRODUCT SUMMARY VGS(off) (V) V(BR)GSS Min (V) gfs Min (mS) IG Max (pA) jVGS1 – VGS2j Max (mV) –1.0 to –4.5 –50 1 –50 25 FEATURES BENEFITS APPLICATIONS D D D D D D D Tight Differential Match vs. Current D Improved Op Amp Speed, Settling Time Accuracy D Minimum Input Error/Trimming Requirement D Insignificant Signal Loss/Error Voltage D High System Sensitivity D Minimum Error with Large Input Signal D Wideband Differential Amps D High-Speed, Temp-Compensated, Single-Ended Input Amps D High Speed Comparators D Impedance Converters Monolithic Design High Slew Rate Low Offset/Drift Voltage Low Gate Leakage: 5 pA Low Noise: 9 nV⁄√Hz High CMRR: 100 dB DESCRIPTION The low cost 2N3958 JFET dual is designed for high-performance differential amplification for a wide range of precision test instrumentation applications. This series features tightly matched specs, low gate leakage for accuracy, and wide dynamic range with IG guaranteed at VDG = 20 V. The hermetically-sealed TO-71 package is available with full military processing (see Military Information and the 2N5545/5546/5547JANTX/JANTXV data sheet). For similar products see 2N5196/5197/5198/5199, the low-noise U/SST401 series, the high-gain 2N5911/5912, and the low-leakage U421/423 data sheets. TO-71 S1 G2 1 D1 6 2 D2 5 3 4 G1 S2 Top View ABSOLUTE MAXIMUM RATINGS Gate-Drain, Gate-Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 V Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Lead Temperature (1/16” from case for 10 sec.) . . . . . . . . . . . . . . . . . . 300 _C Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65 to 200_C Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . –55 to 150_C Document Number: 70256 S-04031—Rev. B, 04-Jun-01 Power Dissipation : Per Sidea . . . . . . . . . . . . . . . . . . . . . . . . 250 mW Totalb . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW Notes a. Derate 2 mW/_C above 85_C b. Derate 4 mW/_C above 85_C www.vishay.com 8-1 2N3958 Vishay Siliconix SPECIFICATIONS (TA = 25_C UNLESS OTHERWISE NOTED) Limits Parameter Min Typa IG = –1 mA, VDS = 0 V –50 –57 VDS = 20 V, ID = 1 nA –1.0 –2 VDS = 20 V, VGS = 0 V 0.5 Symbol Test Conditions V(BR)GSS VGS(off) Max Unit Static Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Currentb IDSS V VGS = –30 V, VDS = 0 V Gate Reverse Current Gate Operating Current Gate-Source Voltage Gate-Source Forward Voltage IGSS IG VGS TA = 150_C VDG = 20 V, ID = 200 mA TA =125_C VDG = 20 V, ID = 200 mA –0.5 –4.5 3 5 mA –10 –100 pA –20 –500 nA –5 –50 pA –0.8 –250 nA –1.5 –4 ID = 50 mA VGS(F) IG = 1 mA, VDS = 0 V Common-Source Forward Transconductance gfs VDS = 20 V, VGS = 0 V f = 1 kHz Common-Source Output Conductance gos Common-Source Input Capacitance Ciss –4.2 V 2 Dynamic Common-Source Reverse Transfer Capacitance Crss VDS = 20 V, VGS = 0 V f = 1 MHz Drain-Gate Capacitance Cdg VDG = 10 V, IS = 0 , f = 1 MHz Equivalent Input Noise Voltage en VDS = 20 V, VGS = 0 V, f = 1 kHz Noise Figure NF VDS = 20 V, VGS = 0 V f = 100 Hz, RG = 10 MW 1 2.5 3 mS 2 35 mS 3 4 1 1.2 pF 1.5 nV⁄ √Hz 9 0.5 dB Matching Differential Gate-Source Voltage Gate-Source Voltage Differential Change with Temperature Saturation Drain Current Ratio Transconductance Ratio |V GS1–V GS2| VDG = 20 V, ID = 200 mA 15 25 mV D|V GS1–V GS2| VDG = 20 V, ID = 200 mA TA = –55 to 125_C 20 100 mV/_C 0.85 0.97 1 0.85 0.97 1 DT I DSS1 I DSS2 gfs1 gfs2 Differential Output Conductance |g os1–g os2| Differential Gate Current |I G1–I G2| Common Mode Rejection Ratioc CMRR VDS = 20 V, VGS = 0 V VDS = 20 V, ID = 200 mA f = 1 kHz VDG = 20 V, ID = 200 mA TA = 125_C 0.1 VDG = 10 to 20 V, ID = 200 mA 100 Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b. Pulse test: PW v300 ms duty cycle v3%. c. This parameter not registered with JEDEC. www.vishay.com 8-2 mS 0.1 10 nA dB NQP Document Number: 70256 S-04031—Rev. B, 04-Jun-01 2N3958 Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED) Drain Current and Transconductance vs. Gate-Source Cutoff Voltage Gate Leakage Current 3 2.6 IDSS gfs 3 2.2 2 1.8 IDSS @ VDS = 15 V, VGS = 0 V gfs @ VDG = 15 V, VGS = 0 V f = 1 kHz 1 1.4 0 IG @ ID = 200 mA 10 nA TA = 125_C I G – Gate Leakage 4 100 nA gfs – Forward Transconductance (mS) IDSS – Saturation Drain Current (mA) 5 –1 –2 –3 –4 IGSS @ 125_C 100 pA 50 mA 200 mA 50 mA 10 pA IGSS @ 25_C TA = 25_C 1 pA 1 0 1 nA 0.1 pA –5 0 10 VGS(off) – Gate-Source Cutoff Voltage (V) 20 30 40 Output Characteristics Output Characteristics 5 5 VGS(off) = –3 V VGS = 0 V VGS(off) = –2 V –0.3 V 4 VGS = 0 V 3 –0.2 V –0.4 V 2 –0.6 V –0.8 V I D – Drain Current (mA) 4 I D – Drain Current (mA) 50 VDG – Drain-Gate Voltage (V) –1.0 V 1 –0.6 V 3 –0.9 V –1.2 V 2 –1.5 V –1.8 V 1 –2.1 V –1.2 V 0 0 4 8 12 0 –1.4 V 16 0 20 VDS – Drain-Source Voltage (V) 4 8 16 –2.4 V 20 VDS – Drain-Source Voltage (V) Output Characteristics Output Characteristics 2 2.5 VGS(off) = –2 V VGS = 0 V VGS(off) = –3 V –0.4 V 1.2 –0.6 V –0.8 V 0.8 –1.0 V –1.2 V 0.4 2.0 –0.2 V I D – Drain Current (mA) VGS = 0 V 1.6 I D – Drain Current (mA) 12 –0.3 V –0.6 V –0.9 V 1.5 –1.2 V –1.5 V 1.0 –1.8 V 0.5 –2.1 V 0 –2.4 V –1.4 V 0 –1.6 V 0 0.2 0.4 0.6 VDS – Drain-Source Voltage (V) Document Number: 70256 S-04031—Rev. B, 04-Jun-01 0.8 1 0 0.2 0.4 0.6 0.8 1 VDS – Drain-Source Voltage (V) www.vishay.com 8-3 2N3958 Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED) Gate-Source Differential Voltage vs. Drain Current Transfer Characteristics 5 100 VGS(off) = –2 V VDG = 20 V TA = 25_C VDS = 20 V (mV) TA = –55_C 3 VGS1 – VGS2 I D – Drain Current (mA) 4 25_C 2 10 125_C 1 0 1 0 –0.5 –1.0 –1.5 –2.0 –2.5 0.01 0.1 1 VGS – Gate-Source Voltage (V) ID – Drain Current (mA) Voltage Differential with Temperature vs. Drain Current Common Mode Rejection Ratio vs. Drain Current 100 130 VDG = 20 V ( m V/ _C ) CMRR (dB) DTA = 25 to 125_C DTA = –55 to 25_C Dt 10 110 DVDG = 10 – 20 V 100 5 – 10 V 80 1 0.01 0.1 1 0.01 ID – Drain Current (mA) Circuit Voltage Gain vs. Drain Current On-Resistance vs. Drain Current rDS(on) – Drain-Source On-Resistance ( Ω ) A V – Voltage Gain VGS(off) = –3 V 40 AV + 20 –2 V g fs R L 1 ) R Lg os Assume VDD = 15 V, VDS = 5 V RL + 0 0.01 10 V ID 800 600 VGS(off) = –2 V 400 –3 V 200 0 0.1 ID – Drain Current (mA) www.vishay.com 1 1k 80 60 0.1 ID – Drain Current (mA) 100 8-4 DVDG D V GS1 – VGS2 90 D VGS1 – VGS2 CMRR = 20 log 120 1 0.01 0.1 1 ID – Drain Current (mA) Document Number: 70256 S-04031—Rev. B, 04-Jun-01 2N3958 Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED) Common-Source Input Capacitance vs. Gate-Source Voltage Common-Source Reverse Feedback Capacitance vs. Gate-Source Voltage 10 5 C rss – Reverse Feedback Capacitance (pF) C iss – Input Capacitance (pF) f = 1 MHz 8 6 VDS = 0 V 4 5V 15 V 2 20 V f = 1 MHz 4 VDS = 0 V 3 5V 2 15 V 1 20 V 0 0 0 –4 –8 –12 –16 0 –20 –4 VGS – Gate-Source Voltage (V) Equivalent Input Noise Voltage vs. Frequency VGS(off) = –2 V 16 gos – Output Conductance (µS) Hz –16 –20 2.5 VDS = 20 V en – Noise Voltage nV / –12 Output Conductance vs. Drain Current 20 ID @ 200 mA 12 8 VGS = 0 V 4 0 10 100 1k 10 k VDS = 20 V f = 1 kHz 2.0 TA = –55_C 1.5 1.0 25_C 0.5 125_C 0 0.01 100 k 0.1 1 f – Frequency (Hz) ID – Drain Current (mA) Common-Source Forward Transconductance vs. Drain Current On-Resistance and Output Conductance vs. Gate-Source Cutoff Voltage 10 1k VGS(off) = –2 V VDS = 20 V f = 1 kHz 2.0 TA = –55_C 1.5 25_C 1.0 0.5 125_C gos 800 8 6 600 400 4 rDS 2 200 rDS @ ID = 100 mA, VGS = 0 V gos @ VDS = 20 V, VGS = 0 V, f = 1 kHz 0 0 0.01 0.1 ID – Drain Current (mA) Document Number: 70256 S-04031—Rev. B, 04-Jun-01 1 g os– Output Conductance ( mS) rDS(on) – Drain-Source On-Resistance ( Ω ) 2.5 gfs – Forward Transconductance (mS) –8 VGS – Gate-Source Voltage (V) 0 0 –1 –2 –3 –4 –5 VGS(off) – Gate-Source Cutoff Voltage (V) www.vishay.com 8-5