VISHAY 2N3958

2N3958
Vishay Siliconix
Monolithic N-Channel JFET Dual
PRODUCT SUMMARY
VGS(off) (V)
V(BR)GSS Min (V)
gfs Min (mS)
IG Max (pA)
jVGS1 – VGS2j Max (mV)
–1.0 to –4.5
–50
1
–50
25
FEATURES
BENEFITS
APPLICATIONS
D
D
D
D
D
D
D Tight Differential Match vs. Current
D Improved Op Amp Speed, Settling Time
Accuracy
D Minimum Input Error/Trimming Requirement
D Insignificant Signal Loss/Error Voltage
D High System Sensitivity
D Minimum Error with Large Input Signal
D Wideband Differential Amps
D High-Speed,
Temp-Compensated,
Single-Ended Input Amps
D High Speed Comparators
D Impedance Converters
Monolithic Design
High Slew Rate
Low Offset/Drift Voltage
Low Gate Leakage: 5 pA
Low Noise: 9 nV⁄√Hz
High CMRR: 100 dB
DESCRIPTION
The low cost 2N3958 JFET dual is designed for
high-performance differential amplification for a wide range of
precision test instrumentation applications. This series
features tightly matched specs, low gate leakage for accuracy,
and wide dynamic range with IG guaranteed at VDG = 20 V.
The hermetically-sealed TO-71 package is available with full
military processing (see Military Information and the
2N5545/5546/5547JANTX/JANTXV data sheet).
For similar products see 2N5196/5197/5198/5199, the
low-noise U/SST401 series, the high-gain 2N5911/5912, and
the low-leakage U421/423 data sheets.
TO-71
S1
G2
1
D1
6
2
D2
5
3
4
G1
S2
Top View
ABSOLUTE MAXIMUM RATINGS
Gate-Drain, Gate-Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Lead Temperature (1/16” from case for 10 sec.) . . . . . . . . . . . . . . . . . . 300 _C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65 to 200_C
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . –55 to 150_C
Document Number: 70256
S-04031—Rev. B, 04-Jun-01
Power Dissipation :
Per Sidea . . . . . . . . . . . . . . . . . . . . . . . . 250 mW
Totalb . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW
Notes
a. Derate 2 mW/_C above 85_C
b. Derate 4 mW/_C above 85_C
www.vishay.com
8-1
2N3958
Vishay Siliconix
SPECIFICATIONS (TA = 25_C UNLESS OTHERWISE NOTED)
Limits
Parameter
Min
Typa
IG = –1 mA, VDS = 0 V
–50
–57
VDS = 20 V, ID = 1 nA
–1.0
–2
VDS = 20 V, VGS = 0 V
0.5
Symbol
Test Conditions
V(BR)GSS
VGS(off)
Max
Unit
Static
Gate-Source Breakdown Voltage
Gate-Source Cutoff Voltage
Saturation Drain Currentb
IDSS
V
VGS = –30 V, VDS = 0 V
Gate Reverse Current
Gate Operating Current
Gate-Source Voltage
Gate-Source Forward Voltage
IGSS
IG
VGS
TA = 150_C
VDG = 20 V, ID = 200 mA
TA =125_C
VDG = 20 V, ID = 200 mA
–0.5
–4.5
3
5
mA
–10
–100
pA
–20
–500
nA
–5
–50
pA
–0.8
–250
nA
–1.5
–4
ID = 50 mA
VGS(F)
IG = 1 mA, VDS = 0 V
Common-Source
Forward Transconductance
gfs
VDS = 20 V, VGS = 0 V
f = 1 kHz
Common-Source Output Conductance
gos
Common-Source Input Capacitance
Ciss
–4.2
V
2
Dynamic
Common-Source
Reverse Transfer Capacitance
Crss
VDS = 20 V, VGS = 0 V
f = 1 MHz
Drain-Gate Capacitance
Cdg
VDG = 10 V, IS = 0 , f = 1 MHz
Equivalent Input Noise Voltage
en
VDS = 20 V, VGS = 0 V, f = 1 kHz
Noise Figure
NF
VDS = 20 V, VGS = 0 V
f = 100 Hz, RG = 10 MW
1
2.5
3
mS
2
35
mS
3
4
1
1.2
pF
1.5
nV⁄
√Hz
9
0.5
dB
Matching
Differential Gate-Source Voltage
Gate-Source Voltage Differential Change with
Temperature
Saturation Drain Current Ratio
Transconductance Ratio
|V GS1–V GS2|
VDG = 20 V, ID = 200 mA
15
25
mV
D|V GS1–V GS2|
VDG = 20 V, ID = 200 mA
TA = –55 to 125_C
20
100
mV/_C
0.85
0.97
1
0.85
0.97
1
DT
I DSS1
I DSS2
gfs1
gfs2
Differential Output Conductance
|g os1–g os2|
Differential Gate Current
|I G1–I G2|
Common Mode Rejection Ratioc
CMRR
VDS = 20 V, VGS = 0 V
VDS = 20 V, ID = 200 mA
f = 1 kHz
VDG = 20 V, ID = 200 mA
TA = 125_C
0.1
VDG = 10 to 20 V, ID = 200 mA
100
Notes
a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
b. Pulse test: PW v300 ms duty cycle v3%.
c. This parameter not registered with JEDEC.
www.vishay.com
8-2
mS
0.1
10
nA
dB
NQP
Document Number: 70256
S-04031—Rev. B, 04-Jun-01
2N3958
Vishay Siliconix
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
Drain Current and Transconductance
vs. Gate-Source Cutoff Voltage
Gate Leakage Current
3
2.6
IDSS
gfs
3
2.2
2
1.8
IDSS @ VDS = 15 V, VGS = 0 V
gfs @ VDG = 15 V, VGS = 0 V
f = 1 kHz
1
1.4
0
IG @ ID = 200 mA
10 nA
TA = 125_C
I G – Gate Leakage
4
100 nA
gfs – Forward Transconductance (mS)
IDSS – Saturation Drain Current (mA)
5
–1
–2
–3
–4
IGSS @ 125_C
100 pA
50 mA
200 mA
50 mA
10 pA
IGSS @ 25_C
TA = 25_C
1 pA
1
0
1 nA
0.1 pA
–5
0
10
VGS(off) – Gate-Source Cutoff Voltage (V)
20
30
40
Output Characteristics
Output Characteristics
5
5
VGS(off) = –3 V
VGS = 0 V
VGS(off) = –2 V
–0.3 V
4
VGS = 0 V
3
–0.2 V
–0.4 V
2
–0.6 V
–0.8 V
I D – Drain Current (mA)
4
I D – Drain Current (mA)
50
VDG – Drain-Gate Voltage (V)
–1.0 V
1
–0.6 V
3
–0.9 V
–1.2 V
2
–1.5 V
–1.8 V
1
–2.1 V
–1.2 V
0
0
4
8
12
0
–1.4 V
16
0
20
VDS – Drain-Source Voltage (V)
4
8
16
–2.4 V
20
VDS – Drain-Source Voltage (V)
Output Characteristics
Output Characteristics
2
2.5
VGS(off) = –2 V
VGS = 0 V
VGS(off) = –3 V
–0.4 V
1.2
–0.6 V
–0.8 V
0.8
–1.0 V
–1.2 V
0.4
2.0
–0.2 V
I D – Drain Current (mA)
VGS = 0 V
1.6
I D – Drain Current (mA)
12
–0.3 V
–0.6 V
–0.9 V
1.5
–1.2 V
–1.5 V
1.0
–1.8 V
0.5
–2.1 V
0
–2.4 V
–1.4 V
0
–1.6 V
0
0.2
0.4
0.6
VDS – Drain-Source Voltage (V)
Document Number: 70256
S-04031—Rev. B, 04-Jun-01
0.8
1
0
0.2
0.4
0.6
0.8
1
VDS – Drain-Source Voltage (V)
www.vishay.com
8-3
2N3958
Vishay Siliconix
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
Gate-Source Differential Voltage
vs. Drain Current
Transfer Characteristics
5
100
VGS(off) = –2 V
VDG = 20 V
TA = 25_C
VDS = 20 V
(mV)
TA = –55_C
3
VGS1 – VGS2
I D – Drain Current (mA)
4
25_C
2
10
125_C
1
0
1
0
–0.5
–1.0
–1.5
–2.0
–2.5
0.01
0.1
1
VGS – Gate-Source Voltage (V)
ID – Drain Current (mA)
Voltage Differential with Temperature
vs. Drain Current
Common Mode Rejection Ratio
vs. Drain Current
100
130
VDG = 20 V
( m V/ _C )
CMRR (dB)
DTA = 25 to 125_C
DTA = –55 to 25_C
Dt
10
110
DVDG = 10 – 20 V
100
5 – 10 V
80
1
0.01
0.1
1
0.01
ID – Drain Current (mA)
Circuit Voltage Gain vs. Drain Current
On-Resistance vs. Drain Current
rDS(on) – Drain-Source On-Resistance ( Ω )
A V – Voltage Gain
VGS(off) = –3 V
40
AV +
20
–2 V
g fs R L
1 ) R Lg os
Assume VDD = 15 V, VDS = 5 V
RL +
0
0.01
10 V
ID
800
600
VGS(off) = –2 V
400
–3 V
200
0
0.1
ID – Drain Current (mA)
www.vishay.com
1
1k
80
60
0.1
ID – Drain Current (mA)
100
8-4
DVDG
D V
GS1 – VGS2
90
D
VGS1 – VGS2
CMRR = 20 log
120
1
0.01
0.1
1
ID – Drain Current (mA)
Document Number: 70256
S-04031—Rev. B, 04-Jun-01
2N3958
Vishay Siliconix
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
Common-Source Input Capacitance
vs. Gate-Source Voltage
Common-Source Reverse Feedback
Capacitance vs. Gate-Source Voltage
10
5
C rss – Reverse Feedback Capacitance (pF)
C iss – Input Capacitance (pF)
f = 1 MHz
8
6
VDS = 0 V
4
5V
15 V
2
20 V
f = 1 MHz
4
VDS = 0 V
3
5V
2
15 V
1
20 V
0
0
0
–4
–8
–12
–16
0
–20
–4
VGS – Gate-Source Voltage (V)
Equivalent Input Noise Voltage vs. Frequency
VGS(off) = –2 V
16
gos – Output Conductance (µS)
Hz
–16
–20
2.5
VDS = 20 V
en – Noise Voltage nV /
–12
Output Conductance vs. Drain Current
20
ID @ 200 mA
12
8
VGS = 0 V
4
0
10
100
1k
10 k
VDS = 20 V
f = 1 kHz
2.0
TA = –55_C
1.5
1.0
25_C
0.5
125_C
0
0.01
100 k
0.1
1
f – Frequency (Hz)
ID – Drain Current (mA)
Common-Source Forward Transconductance
vs. Drain Current
On-Resistance and Output Conductance
vs. Gate-Source Cutoff Voltage
10
1k
VGS(off) = –2 V
VDS = 20 V
f = 1 kHz
2.0
TA = –55_C
1.5
25_C
1.0
0.5
125_C
gos
800
8
6
600
400
4
rDS
2
200
rDS @ ID = 100 mA, VGS = 0 V
gos @ VDS = 20 V, VGS = 0 V, f = 1 kHz
0
0
0.01
0.1
ID – Drain Current (mA)
Document Number: 70256
S-04031—Rev. B, 04-Jun-01
1
g os– Output Conductance ( mS)
rDS(on) – Drain-Source On-Resistance ( Ω )
2.5
gfs – Forward Transconductance (mS)
–8
VGS – Gate-Source Voltage (V)
0
0
–1
–2
–3
–4
–5
VGS(off) – Gate-Source Cutoff Voltage (V)
www.vishay.com
8-5