2N3819 Vishay Siliconix N-Channel JFET PRODUCT SUMMARY VGS(off) (V) V(BR)GSS Min (V) gfs Min (mS) IDSS Min (mA) v –8 –25 2 2 FEATURES BENEFITS APPLICATIONS D Excellent High-Frequency Gain: Gps 11 dB @ 400 MHz D Very Low Noise: 3 dB @ 400 MHz D Very Low Distortion D High ac/dc Switch Off-Isolation D High Gain: AV = 60 @ 100 mA D D D D D D D D D Wideband High Gain Very High System Sensitivity High Quality of Amplification High-Speed Switching Capability High Low-Level Signal Amplification High-Frequency Amplifier/Mixer Oscillator Sample-and-Hold Very Low Capacitance Switches DESCRIPTION The 2N3819 is a low-cost, all-purpose JFET which offers good performance at mid-to-high frequencies. It features low noise and leakage and guarantees high gain at 100 MHz. Its TO-226AA (TO-92) package is compatible with various tape-and-reel options for automated assembly (see Packaging Information). For similar products in TO-206AF (TO-72) and TO-236 (SOT-23) packages, see the 2N4416/2N4416A/SST4416 data sheet. TO-226AA (TO-92) S 1 G 2 D 3 Top View ABSOLUTE MAXIMUM RATINGS Gate-Source/Gate-Drain Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –25 V Lead Temperature (1/16” from case for 10 sec.) . . . . . . . . . . . . . . . . . . . 300_C Forward Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA Power Dissipationa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 mW Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55 to 150_C Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . –55 to 150_C Document Number: 70238 S–04028—Rev. D ,04-Jun-01 Notes a. Derate 2.8 mW/_C above 25_C www.vishay.com 7-1 2N3819 Vishay Siliconix SPECIFICATIONS (TA = 25_C UNLESS OTHERWISE NOTED) Limits Parameter Symbol Test Conditions Min Typa V(BR)GSS IG = –1 mA , VDS = 0 V –25 –35 VGS(off) VDS = 15 V, ID = 2 nA Max Unit Static Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Currentb IDSS Gate Reverse Current VDS = 15 V, VGS = 0 V IGSS Gate Operating Currentc Drain Cutoff Current Drain-Source On-Resistance Gate-Source Voltage Gate-Source Forward Voltage 2 VGS = –15 V, VDS = 0 V TA = 100_C –8 10 20 mA –0.002 –2 nA –0.002 –2 mA IG VDG = 10 V, ID = 1 mA –20 ID(off) VDS = 10 V, VGS = –8 V 2 rDS(on) VGS = 0 V, ID = 1 mA VGS VDS = 15 V, ID = 200 mA VGS(F) IG = 1 mA , VDS = 0 V V –3 pA W 150 –0.5 –2.5 –7.5 V 0.7 Dynamic Common-Source Forward Transconductancec gfs Common-Source Output Conductancec gos Common-Source Input Capacitance Ciss Common-Source Reverse Transfer Capacitance Crss Equivalent Input Noise Voltagec VDS = 15 V VGS = 0 V f = 1 kHz 2 5.5 f = 100 MHz 1.6 5.5 f = 1 kHz VDS = 15 V, VGS = 0 V, f = 1 MHz en VDS = 10 V, VGS = 0 V, f = 100 Hz 6.5 mS 25 50 2.2 8 0.7 4 mS pF nV⁄ √Hz 6 Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b. Pulse test: PW v300 ms, duty cycle v2%. c. This parameter not registered with JEDEC. NH TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED) Drain Current and Transconductance vs. Gate-Source Cutoff Voltage On-Resistance and Output Conductance vs. Gate-Source Cutoff Voltage 10 8 6 gfs 12 4 8 IDSS @ VDS = 15 V, VGS = 0 V gfs @ VDS = 15 V, VGS = 0 V f = 1 kHz 4 2 0 0 0 –2 –4 –6 –8 VGS(off) – Gate-Source Cutoff Voltage (V) www.vishay.com 7-2 –10 rDS(on) – Drain-Source On-Resistance ( Ω ) 16 100 rDS @ ID = 1 mA, VGS = 0 V gos @ VDS = 10 V, VGS = 0 V f = 1 kHz 400 80 rDS 300 60 gos 200 40 100 20 0 gos – Output Conductance (mS) IDSS 500 gfs – Forward Transconductance (mS) IDSS – Saturation Drain Current (mA) 20 0 0 –2 –4 –6 –8 –10 VGS(off) – Gate-Source Cutoff Voltage (V) Document Number: 70238 S–04028—Rev. D ,04-Jun-01 2N3819 Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED) Common-Source Forward Transconductance vs. Drain Current Gate Leakage Current 100 nA 10 5 mA VGS(off) = –3 V gfs – Forward Transconductance (mS) 1 mA 10 nA IG – Gate Leakage 0.1 mA 1 nA TA = 125_C IGSS @ 125_C 100 pA 5 mA 1 mA 10 pA 0.1 mA TA = 25_C 1 pA IGSS @ 25_C 0.1 pA 8 TA = –55_C 6 25_C 4 125_C 2 0 0 10 20 0.1 1 VDG – Drain-Gate Voltage (V) 10 ID – Drain Current (mA) Output Characteristics Output Characteristics 15 10 VGS(off) = –2 V VGS(off) = –3 V 12 8 VGS = 0 V 6 ID – Drain Current (mA) ID – Drain Current (mA) VDS = 10 V f = 1 kHz –0.2 V –0.4 V 4 –0.6 V –0.8 V 2 –1.0 V –1.2 V 0 –1.4 V VGS = 0 V –0.3 V 9 –0.6 V –0.9 V 6 –1.2 V –1.5 V 3 –1.8 V 2 0 4 6 8 0 2 0 10 VDS – Drain-Source Voltage (V) 4 6 8 10 VDS – Drain-Source Voltage (V) Transfer Characteristics Transfer Characteristics 10 10 VGS(off) = –2 V VDS = 10 V VGS(off) = –3 V VDS = 10 V 8 8 ID – Drain Current (mA) ID – Drain Current (mA) TA = –55_C TA = –55_C 25_C 6 125_C 4 25_C 6 125_C 4 2 2 0 0 0 –0.4 –0.8 –1.2 –1.6 VGS – Gate-Source Voltage (V) Document Number: 70238 S–04028—Rev. D ,04-Jun-01 –2 0 –0.6 –1.2 –1.8 –2.4 –3 VGS – Gate-Source Voltage (V) www.vishay.com 7-3 2N3819 Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED) Transconductance vs. Gate-Source Voltage Transconductance vs. Gate-Source Voltgage 10 10 VDS = 10 V f = 1 kHz VGS(off) = –3 V 8 gfs – Forward Transconductance (mS) gfs – Forward Transconductance (mS) VGS(off) = –2 V TA = –55_C 6 25_C 4 125_C 2 0 8 TA = –55_C 6 25_C 4 125_C 2 0 0 –0.4 –0.8 –1.2 –1.6 –2 0 On-Resistance vs. Drain Current –2.4 –3 Circuit Voltage Gain vs. Drain Current 100 TA = –55_C g fs R L AV + 1 ) R g L os Assume VDD = 15 V, VDS = 5 V 80 240 VGS(off) = –2 V AV – Voltage Gain rDS(on) – Drain-Source On-Resistance ( Ω ) –1.8 VGS – Gate-Source Voltage (V) 300 180 –3 V 120 RL + 60 10 V ID VGS(off) = –2 V 40 60 20 0 0 –3 V 0.1 1 10 0.1 1 10 ID – Drain Current (mA) ID – Drain Current (mA) Common-Source Input Capacitance vs. Gate-Source Voltage Common-Source Reverse Feedback Capacitance vs. Gate-Source Voltage 5 3.0 Crss – Reverse Feedback Capacitance (pF) f = 1 MHz 4 Ciss – Input Capacitance (pF) –1.2 –0.6 VGS – Gate-Source Voltage (V) VDS = 0 V 3 2 VDS = 10 V 1 0 f = 1 MHz 2.4 1.8 VDS = 0 V 1.2 VDS = 10 V 0.6 0 0 –4 –8 –12 –16 VGS – Gate-Source Voltage (V) www.vishay.com 7-4 VDS = 10 V f = 1 kHz –20 0 –4 –8 –12 –16 –20 VGS – Gate-Source Voltage (V) Document Number: 70238 S–04028—Rev. D ,04-Jun-01 2N3819 Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED) Input Admittance Forward Admittance 100 100 TA = 25_C VDS = 15 V VGS = 0 V Common Source TA = 25_C VDS = 15 V VGS = 0 V Common Source bis 10 10 gfs (mS) (mS) gis 1 –bis 1 0.1 100 200 500 0.1 100 1000 f – Frequency (MHz) 1000 Output Admittance 10 TA = 25_C VDS = 15 V VGS = 0 V Common Source 500 f – Frequency (MHz) Reverse Admittance 10 200 –brs TA = 25_C VDS = 15 V VGS = 0 V Common Source bos 1 gos (mS) (mS) 1 –grs 0.1 0.1 0.01 100 200 500 0.01 100 1000 f – Frequency (MHz) Equivalent Input Noise Voltage vs. Frequency 1000 Output Conductance vs. Drain Current 20 VDS = 10 V VGS(off) = –3 V gos – Output Conductance (mS) VGS(off) = –3 V Hz 500 f – Frequency (MHz) 20 en – Noise Voltage nV / 200 16 12 8 ID = 5 mA 4 VDS = 10 V f = 1 kHz 16 TA = –55_C 12 25_C 8 125_C 4 ID = IDSS 0 10 100 1k f – Frequency (Hz) Document Number: 70238 S–04028—Rev. D ,04-Jun-01 10 k 100 k 0 0.1 1 10 ID – Drain Current (mA) www.vishay.com 7-5