MOTOROLA MPS6523

Order this document
by MPS6520/D
SEMICONDUCTOR TECHNICAL DATA
COLLECTOR 3
2
BASE
1 EMITTER
COLLECTOR 3
Voltage and current are negative
for PNP transistors
2
BASE
*Motorola Preferred Device
1 EMITTER
MAXIMUM RATINGS
Rating
Symbol
Collector – Emitter Voltage
MPS6520, MPS6521
MPS6523
VCEO
Collector – Base Voltage
MPS6520, MPS6521
MPS6523
VCBO
Emitter – Base Voltage
VEBO
4.0
Vdc
Collector Current — Continuous
IC
100
mAdc
Total Device Dissipation @ TA = 25°C
Derate above 25°C
PD
625
5.0
mW
mW/°C
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
1.5
12
Watts
mW/°C
TJ, Tstg
– 55 to +150
°C
Operating and Storage Junction
Temperature Range
NPN
PNP
25
—
—
25
40
—
—
25
Unit
Vdc
Vdc
1
2
3
CASE 29–04, STYLE 1
TO–92 (TO–226AA)
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Ambient
(Printed Circuit Board Mounting)
RqJA
200
°C/W
Thermal Resistance, Junction to Case
RqJC
83.3
°C/W
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Min
Max
Unit
Collector – Emitter Breakdown Voltage
(IC = 0.5 mAdc, IB = 0)
V(BR)CEO
25
—
Vdc
Emitter – Base Breakdown Voltage
(IE = 10 mAdc, IC = 0)
V(BR)EBO
4.0
—
Vdc
—
—
0.05
0.05
Characteristic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 30 Vdc, IE = 0)
(VCB = 20 Vdc, IE = 0)
mAdc
ICBO
MPS6520, MPS6521
MPS6523
Preferred devices are Motorola recommended choices for future use and best overall value.
Motorola Small–Signal Transistors, FETs and Diodes Device Data
 Motorola, Inc. 1996
1
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Max
Unit
MPS6520
MPS6521
100
150
—
—
(IC = 2.0 mAdc, VCE = 10 Vdc)
MPS6520
MPS6521
200
300
400
600
(IC = 100 mAdc, VCE = 10 Vdc)
MPS6523
150
—
(IC = 2.0 mAdc, VCE = 10 Vdc)
MPS6523
300
600
VCE(sat)
—
0.5
Vdc
Cobo
—
3.5
pF
NF
—
3.0
dB
ON CHARACTERISTICS
DC Current Gain
(IC = 100 mAdc, VCE = 10 Vdc)
hFE
Collector – Emitter Saturation Voltage
(IC = 50 mAdc, IB = 5.0 mAdc)
—
SMALL– SIGNAL CHARACTERISTICS
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 1.0 MHz)
Noise Figure
(IC = 10 mAdc, VCE = 5.0 Vdc, RS = 10 k Ω,
Power Bandwidth = 15.7 kHz, 3.0 dB points @ 10 Hz and 10 kHz)
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data
NPN
MPS6520, MPS6521
EQUIVALENT SWITCHING TIME TEST CIRCUITS
+ 3.0 V
300 ns
DUTY CYCLE = 2%
275
+10.9 V
+ 3.0 V
10 < t1 < 500 µs
DUTY CYCLE = 2%
t1
+10.9 V
10 k
275
10 k
0
– 0.5 V
<1.0 ns
CS < 4.0 pF*
– 9.1 V
< 1.0 ns
CS < 4.0 pF*
1N916
*Total shunt capacitance of test jig and connectors
Figure 1. Turn–On Time
Figure 2. Turn–Off Time
TYPICAL NOISE CHARACTERISTICS
(VCE = 5.0 Vdc, TA = 25°C)
20
100
BANDWIDTH = 1.0 Hz
RS = 0
50
300 µA
10
In, NOISE CURRENT (pA)
en, NOISE VOLTAGE (nV)
IC = 1.0 mA
100 µA
7.0
5.0
10 µA
3.0
20
300 µA
100 µA
10
5.0
2.0
1.0
30 µA
0.5
30 µA
10 µA
0.2
2.0
BANDWIDTH = 1.0 Hz
RS ≈ ∞
IC = 1.0 mA
0.1
10
20
50
100 200
500 1 k
f, FREQUENCY (Hz)
2k
5k
10 k
Figure 3. Noise Voltage
Motorola Small–Signal Transistors, FETs and Diodes Device Data
10
20
50
100 200
500 1 k
f, FREQUENCY (Hz)
2k
5k
10 k
Figure 4. Noise Current
3
NPN
MPS6520, MPS6521
NOISE FIGURE CONTOURS
(VCE = 5.0 Vdc, TA = 25°C)
BANDWIDTH = 1.0 Hz
200 k
100 k
50 k
RS , SOURCE RESISTANCE (OHMS)
RS , SOURCE RESISTANCE (OHMS)
500 k
20 k
10 k
5k
2.0 dB
2k
1k
500
3.0 dB 4.0 dB
6.0 dB
10 dB
200
100
50
1M
500 k
BANDWIDTH = 1.0 Hz
200 k
100 k
50 k
20 k
10 k
1.0 dB
5k
2.0 dB
2k
1k
500
5.0 dB
200
100
10
20
30
50 70 100
200 300
IC, COLLECTOR CURRENT (µA)
500 700
1k
8.0 dB
10
20
Figure 5. Narrow Band, 100 Hz
500 k
RS , SOURCE RESISTANCE (OHMS)
3.0 dB
30
50 70 100
200 300
IC, COLLECTOR CURRENT (µA)
500 700
1k
Figure 6. Narrow Band, 1.0 kHz
10 Hz to 15.7 kHz
200 k
100 k
50 k
ǒ
Noise Figure is defined as:
20 k
10 k
5k
NF
1.0 dB
2k
1k
500
3.0 dB
5.0 dB
8.0 dB
10
20
30
50 70 100
200 300
500 700
en2
Ǔ
) 4KTRS ) In 2RS2 1ń2
4KTRS
en = Noise Voltage of the Transistor referred to the input. (Figure 3)
In = Noise Current of the Transistor referred to the input. (Figure 4)
K = Boltzman’s Constant (1.38 x 10–23 j/°K)
T = Temperature of the Source Resistance (°K)
RS = Source Resistance (Ohms)
2.0 dB
200
100
50
+ 20 log10
1k
IC, COLLECTOR CURRENT (µA)
Figure 7. Wideband
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data
NPN
MPS6520, MPS6521
TYPICAL STATIC CHARACTERISTICS
h FE, DC CURRENT GAIN
400
TJ = 125°C
25°C
200
– 55°C
100
80
60
VCE = 1.0 V
VCE = 10 V
40
0.004 0.006 0.01
0.02 0.03
0.05 0.07 0.1
0.2 0.3
0.5 0.7 1.0
2.0
IC, COLLECTOR CURRENT (mA)
3.0
5.0 7.0 10
20
30
50
70 100
100
1.0
TJ = 25°C
IC, COLLECTOR CURRENT (mA)
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 8. DC Current Gain
0.8
IC = 1.0 mA
0.6
10 mA
50 mA
100 mA
0.4
0.2
0
0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0
IB, BASE CURRENT (mA)
TA = 25°C
PULSE WIDTH = 300 µs
80 DUTY CYCLE ≤ 2.0%
300 µA
200 µA
40
100 µA
20
0
5.0 10
0
20
5.0
10
15
20
25
30
35
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
θV, TEMPERATURE COEFFICIENTS (mV/°C)
TJ = 25°C
V, VOLTAGE (VOLTS)
1.2
1.0
VBE(sat) @ IC/IB = 10
0.6
VBE(on) @ VCE = 1.0 V
0.4
0.2
VCE(sat) @ IC/IB = 10
0
0.2
2.0
5.0
10
20
0.5 1.0
IC, COLLECTOR CURRENT (mA)
40
Figure 10. Collector Characteristics
1.4
0.1
400 µA
60
Figure 9. Collector Saturation Region
0.8
IB = 500 µA
50
100
Figure 11. “On” Voltages
Motorola Small–Signal Transistors, FETs and Diodes Device Data
1.6
*APPLIES for IC/IB ≤ hFE/2
0.8
25°C to 125°C
0
*qVC for VCE(sat)
– 55°C to 25°C
– 0.8
25°C to 125°C
– 1.6
qVB for VBE
– 2.4
0.1
0.2
– 55°C to 25°C
0.5
1.0 2.0
5.0 10 20
IC, COLLECTOR CURRENT (mA)
50
100
Figure 12. Temperature Coefficients
5
NPN
MPS6520, MPS6521
TYPICAL DYNAMIC CHARACTERISTICS
1000
VCC = 3.0 V
IC/IB = 10
TJ = 25°C
100
70
50
700
500
ts
300
200
t, TIME (ns)
t, TIME (ns)
300
200
tr
30
20
td @ VBE(off) = 0.5 Vdc
10
7.0
5.0
100
70
50
tf
30
VCC = 3.0 V
IC/IB = 10
IB1 = IB2
TJ = 25°C
20
3.0
1.0
2.0
50 70
20 30
5.0 7.0 10
3.0
IC, COLLECTOR CURRENT (mA)
10
1.0
100
2.0
3.0
500
TJ = 25°C
f = 1.0 MHz
7.0
300
VCE = 20 V
200
5.0 V
100
Cib
5.0
Cob
3.0
2.0
70
50
0.5 0.7 1.0
2.0
3.0
5.0 7.0
10
20
30
1.0
0.05
50
0.1
0.2
0.5
1.0
2.0
5.0
IC, COLLECTOR CURRENT (mA)
VR, REVERSE VOLTAGE (VOLTS)
Figure 15. Current–Gain — Bandwidth Product
Figure 16. Capacitance
10
hfe ≈ 200 @ IC = 1.0 mA
7.0
5.0
3.0
2.0
1.0
0.7
0.5
0.3
0.2
0.1
10
20
50
200
VCE = 10 Vdc
f = 1.0 kHz
TA = 25°C
hoe, OUTPUT ADMITTANCE (m mhos)
hie , INPUT IMPEDANCE (k Ω )
70 100
10
TJ = 25°C
f = 100 MHz
20
100
70
50
VCE = 10 Vdc
f = 1.0 kHz
TA = 25°C
hfe ≈ 200 @ IC = 1.0 mA
30
20
10
7.0
5.0
3.0
0.2
0.5
20
1.0 2.0
5.0
10
IC, COLLECTOR CURRENT (mA)
Figure 17. Input Impedance
6
50
Figure 14. Turn–Off Time
C, CAPACITANCE (pF)
f T, CURRENT–GAIN BANDWIDTH PRODUCT (MHz)
Figure 13. Turn–On Time
20 30
5.0 7.0 10
IC, COLLECTOR CURRENT (mA)
50
100
2.0
0.1
0.2
0.5
20
1.0 2.0
5.0
10
IC, COLLECTOR CURRENT (mA)
50
100
Figure 18. Output Admittance
Motorola Small–Signal Transistors, FETs and Diodes Device Data
r(t) TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
NPN
MPS6520, MPS6521
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
0.1
0.07
0.05
FIGURE 19A
0.05
P(pk)
0.02
0.03
0.02
t1
0.01
0.01
0.01 0.02
SINGLE PULSE
0.05
0.1
0.2
0.5
t2
1.0
2.0
5.0
10
20
50
t, TIME (ms)
100 200
DUTY CYCLE, D = t1/t2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1 (SEE AN–569)
ZθJA(t) = r(t) • RθJA
TJ(pk) – TA = P(pk) ZθJA(t)
500 1.0 k 2.0 k
5.0 k 10 k 20 k
50 k 100 k
Figure 19. Thermal Response
104
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
IC, COLLECTOR CURRENT (nA)
VCC = 30 Vdc
A train of periodical power pulses can be represented by the model
as shown in Figure 19A. Using the model and the device thermal
response the normalized effective transient thermal resistance of
Figure 19 was calculated for various duty cycles.
To find Z θJA(t), multiply the value obtained from Figure 19 by the
steady state value RθJA.
Example:
The MPS3904 is dissipating 2.0 watts peak under the following
conditions:
t1 = 1.0 ms, t2 = 5.0 ms. (D = 0.2)
Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the reading of
r(t) is 0.22.
103
102
ICEO
101
ICBO
AND
ICEX @ VBE(off) = 3.0 Vdc
100
10–1
10–2
–4
0
–2
0
0
+ 20 + 40 + 60 + 80 + 100 + 120 + 140 + 160
TJ, JUNCTION TEMPERATURE (°C)
The peak rise in junction temperature is therefore
∆T = r(t) x P(pk) x RθJA = 0.22 x 2.0 x 200 = 88°C.
For more information, see AN–569.
Figure 19A.
IC, COLLECTOR CURRENT (mA)
400
1.0 ms
200
100
60
40
TC = 25°C
dc
10
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
2.0
10 µs
1.0 s
dc
TJ = 150°C
4.0
The safe operating area curves indicate IC–VCE limits of the
transistor that must be observed for reliable operation. Collector load
lines for specific circuits must fall below the limits indicated by the
applicable curve.
The data of Figure 20 is based upon T J(pk) = 150°C; TC or TA is
variable depending upon conditions. Pulse curves are valid for duty
cycles to 10% provided TJ(pk) ≤ 150°C. TJ(pk) may be calculated from
the data in Figure 19. At high case or ambient temperatures, thermal
limitations will reduce the power that can be handled to values less
than the limitations imposed by second breakdown.
TA = 25°C
20
6.0
100 µs
4.0
6.0 8.0 10
20
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
40
Figure 20.
Motorola Small–Signal Transistors, FETs and Diodes Device Data
7
PNP
MPS6523
TYPICAL NOISE CHARACTERISTICS
(VCE = – 5.0 Vdc, TA = 25°C)
ā
10
7.0
IC = 10 µA
5.0
In, NOISE CURRENT (pA)
en, NOISE VOLTAGE (nV)
1.0
7.0
5.0
BANDWIDTH = 1.0 Hz
RS ≈ 0
30 µA
3.0
100 µA
300 µA
1.0 mA
2.0
BANDWIDTH = 1.0 Hz
RS ≈ ∞
IC = 1.0 mA
3.0
2.0
300 µA
1.0
0.7
0.5
100 µA
30 µA
0.3
0.2
1.0
10 µA
0.1
10
20
50
100 200
500 1.0 k
f, FREQUENCY (Hz)
2.0 k
5.0 k
10
10 k
20
50
Figure 21. Noise Voltage
100 200
500 1.0 k 2.0 k
f, FREQUENCY (Hz)
5.0 k
10 k
Figure 22. Noise Current
NOISE FIGURE CONTOURS
(VCE = – 5.0 Vdc, TA = 25°C)
1.0 M
500 k
BANDWIDTH = 1.0 Hz
RS , SOURCE RESISTANCE (OHMS)
RS , SOURCE RESISTANCE (OHMS)
ā
200 k
100 k
50 k
20 k
10 k
0.5 dB
5.0 k
1.0 dB
2.0 k
1.0 k
500
2.0 dB
3.0 dB
200
100
20
30
50 70 100
200 300
IC, COLLECTOR CURRENT (µA)
20 k
10 k
RS , SOURCE RESISTANCE (OHMS)
0.5 dB
5.0 k
1.0 dB
2.0 k
1.0 k
500
500 700 1.0 k
2.0 dB
3.0 dB
5.0 dB
10
Figure 23. Narrow Band, 100 Hz
1.0 M
500 k
BANDWIDTH = 1.0 Hz
200 k
100 k
50 k
200
100
5.0 dB
10
1.0 M
500 k
20
30
50 70 100
200 300
IC, COLLECTOR CURRENT (µA)
500 700 1.0 k
Figure 24. Narrow Band, 1.0 kHz
10 Hz to 15.7 kHz
200 k
100 k
50 k
ƪ
Noise Figure is Defined as:
NF
20 k
10 k
1.0 dB
2.0 dB
3.0 dB
5.0 dB
200
100
10
20
30
50 70 100
200 300
en2
ƫ
) 4KTRS ) In 2RS2 1ń2
4KTRS
en = Noise Voltage of the Transistor referred to the input. (Figure 3)
In = Noise Current of the Transistor referred to the input. (Figure 4)
K = Boltzman’s Constant (1.38 x 10–23 j/°K)
T = Temperature of the Source Resistance (°K)
RS = Source Resistance (Ohms)
0.5 dB
5.0 k
2.0 k
1.0 k
500
+ 20 log10
500 700 1.0 k
IC, COLLECTOR CURRENT (µA)
Figure 25. Wideband
8
Motorola Small–Signal Transistors, FETs and Diodes Device Data
PNP
MPS6523
TYPICAL STATIC CHARACTERISTICS
h FE, DC CURRENT GAIN
400
TJ = 125°C
25°C
200
– 55°C
100
80
MPS390
VCE
6 = 1.0 V
VCE = 10 V
60
40
0.003 0.005
0.01
0.02 0.03
0.05 0.07 0.1
0.2 0.3 0.5 0.7 1.0
2.0
IC, COLLECTOR CURRENT (mA)
3.0
5.0 7.0
10
20
30
50 70 100
100
1.0
TA = 25°C
MPS3906
IC, COLLECTOR CURRENT (mA)
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 26. DC Current Gain
0.8
IC = 1.0 mA
0.6
10 mA
50 mA
100 mA
0.4
0.2
0
0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0
IB, BASE CURRENT (mA)
TA = 25°C
PULSE WIDTH = 300 µs
80 DUTY CYCLE ≤ 2.0%
300 µA
200 µA
150 µA
40
100 µA
50 µA
20
0
5.0 10
0
20
5.0
10
15
20
25
30
35
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
θV, TEMPERATURE COEFFICIENTS (mV/°C)
TJ = 25°C
V, VOLTAGE (VOLTS)
1.2
1.0
0.8
VBE(sat) @ IC/IB = 10
0.6
VBE(on) @ VCE = 1.0 V
0.4
0.2
VCE(sat) @ IC/IB = 10
0
0.5 1.0
2.0
5.0
10
20
IC, COLLECTOR CURRENT (mA)
50
40
Figure 28. Collector Characteristics
1.4
0.2
250 µA
60
Figure 27. Collector Saturation Region
0.1
IB = 400 µA
350 µA
100
Figure 29. “On” Voltages
Motorola Small–Signal Transistors, FETs and Diodes Device Data
1.6
*APPLIES for IC/IB ≤ hFE/2
0.8
*qVC for VCE(sat)
25°C to 125°C
0
– 55°C to 25°C
0.8
25°C to 125°C
1.6
2.4
0.1
qVB for VBE
0.2
– 55°C to 25°C
0.5
1.0 2.0
5.0
10 20
IC, COLLECTOR CURRENT (mA)
50
100
Figure 30. Temperature Coefficients
9
PNP
MPS6523
TYPICAL DYNAMIC CHARACTERISTICS
1000
700
500
500
VCC = 3.0 V
IC/IB = 10
TJ = 25°C
300
ā
ts
300
200
100
70
50
t, TIME (ns)
t, TIME (ns)
200
30
tr
20
10
7.0
5.0
1.0
100
70
50
tf
30
td @ VBE(off) = 0.5 V
20
2.0
3.0
20 30
5.0 7.0 10
IC, COLLECTOR CURRENT (mA)
50 70
10
–1.0
100
– 2.0 – 3.0 – 5.0 – 7.0 –10
– 20 – 30
IC, COLLECTOR CURRENT (mA)
ā
ā
500
ā
ā
– 50 – 70 –100
ā
ā
ā
10
TJ = 25°C
TJ = 25°C
7.0
VCE = 20 V
300
Cib
5.0 V
200
100
5.0
3.0
2.0
Cob
70
50
0.5 0.7 1.0
2.0
3.0
5.0 7.0
10
20
30
1.0
0.05
50
0.1
0.2
0.5
1.0
2.0
5.0
IC, COLLECTOR CURRENT (mA)
VR, REVERSE VOLTAGE (VOLTS)
Figure 33. Current–Gain — Bandwidth Product
Figure 34. Capacitance
20
3.0
2.0
VCE = –10 Vdc
f = 1.0 kHz
TA = 25°C
hoe, OUTPUT ADMITTANCE (m mhos)
MPS3906
hfe ≈ 200
@ IC = –1.0 mA
7.0
5.0
MPS3905
hfe ≈ 100
@ IC = –1.0 mA
1.0
0.7
0.5
0.3
0.2
0.1
10
20
50
200
10
hie , INPUT IMPEDANCE (k Ω )
ā
Figure 32. Turn–Off Time
C, CAPACITANCE (pF)
f T, CURRENT–GAIN — BANDWIDTH PRODUCT (MHz)
Figure 31. Turn–On Time
100
70
50
30
20
VCE = 10 Vdc
f = 1.0 kHz
TA = 25°C
MPS3906
hfe ≈ 200
@ IC = 1.0 mA
10
7.0
5.0
MPS3905
hfe ≈ 100
@ IC = 1.0 mA
3.0
0.2
0.5
20
1.0 2.0
5.0
10
IC, COLLECTOR CURRENT (mA)
Figure 35. Input Impedance
10
VCC = – 3.0 V
IC/IB = 10
IB1 = IB2
TJ = 25°C
50
100
2.0
0.1
0.2
0.5
20
1.0 2.0
5.0
10
IC, COLLECTOR CURRENT (mA)
50
100
Figure 36. Output Admittance
Motorola Small–Signal Transistors, FETs and Diodes Device Data
PNP
MPS6523
r(t) TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
TYPICAL DYNAMIC CHARACTERISTICS
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
0.1
0.07
0.05
FIGURE 19
0.05
P(pk)
0.02
0.03
0.02
t1
0.01
0.01
0.01 0.02
SINGLE PULSE
0.05
0.1
0.2
0.5
1.0
t2
2.0
5.0
10
20
50
t, TIME (ms)
100 200
DUTY CYCLE, D = t1/t2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1 (SEE AN–569)
ZθJA(t) = r(t) • RθJA
TJ(pk) – TA = P(pk) ZθJA(t)
500 1.0 k 2.0 k
5.0 k 10 k 20 k
50 k 100 k
Figure 37. Thermal Response
IC, COLLECTOR CURRENT (mA)
400
100 µs
100
TC = 25°C
dc
60
1.0 s
TA = 25°C
40
dc
20
TJ = 150°C
10
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
6.0
4.0
10 µs
1.0 ms
200
2.0
4.0
6.0 8.0 10
20
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
The safe operating area curves indicate IC–VCE limits of the
transistor that must be observed for reliable operation. Collector load
lines for specific circuits must fall below the limits indicated by the
applicable curve.
The data of Figure 18 is based upon T J(pk) = 150°C; TC or TA is
variable depending upon conditions. Pulse curves are valid for duty
cycles to 10% provided TJ(pk) ≤ 150°C. TJ(pk) may be calculated from
the data in Figure 17. At high case or ambient temperatures, thermal
limitations will reduce the power than can be handled to values less
than the limitations imposed by second breakdown.
40
Figure 38. Active–Region Safe Operating Area
104
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
IC, COLLECTOR CURRENT (nA)
VCC = 30 V
103
ICEO
102
101
ICBO
AND
ICEX @ VBE(off) = 3.0 V
100
10–1
10–2
–4
0
–2
0
0
+ 20 + 40 + 60 + 80 + 100 + 120 + 140 + 160
TJ, JUNCTION TEMPERATURE (°C)
A train of periodical power pulses can be represented by the model
as shown in Figure 19. Using the model and the device thermal
response the normalized effective transient thermal resistance of
Figure 17 was calculated for various duty cycles.
To find Z θJA(t), multiply the value obtained from Figure 17 by the
steady state value RθJA.
Example:
The MPS3905 is dissipating 2.0 watts peak under the following
conditions:
t1 = 1.0 ms, t2 = 5.0 ms (D = 0.2)
Using Figure 17 at a pulse width of 1.0 ms and D = 0.2, the reading of
r(t) is 0.22.
The peak rise in junction temperature is therefore
∆T = r(t) x P(pk) x RθJA = 0.22 x 2.0 x 200 = 88°C.
For more information, see AN–569.
Figure 39. Typical Collector Leakage Current
Motorola Small–Signal Transistors, FETs and Diodes Device Data
11
PACKAGE DIMENSIONS
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN P AND L.
DIMENSION D AND J APPLY BETWEEN L AND K
MINIMUM. LEAD DIMENSION IS UNCONTROLLED
IN P AND BEYOND DIMENSION K MINIMUM.
B
R
P
L
F
SEATING
PLANE
K
D
J
X X
G
H
V
C
1
SECTION X–X
N
N
CASE 029–04
(TO–226AA)
ISSUE AD
DIM
A
B
C
D
F
G
H
J
K
L
N
P
R
V
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.022
0.016
0.019
0.045
0.055
0.095
0.105
0.015
0.020
0.500
–––
0.250
–––
0.080
0.105
–––
0.100
0.115
–––
0.135
–––
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.41
0.55
0.41
0.48
1.15
1.39
2.42
2.66
0.39
0.50
12.70
–––
6.35
–––
2.04
2.66
–––
2.54
2.93
–––
3.43
–––
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA/EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] – TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
12
◊
Motorola Small–Signal Transistors, FETs and Diodes Device
Data
MPS6520/D