STMICROELECTRONICS TSV6291ICT

TSV6290, TSV6290A, TSV6291, TSV6291A
Micropower with high merit factor CMOS operational amplifiers
Features
■
Low supply voltage: 1.5 V – 5.5 V
5 VCC+
In+ 1
■
Rail-to-rail input and output
■
Low input offset voltage: 800 µV max
(A version)
■
Low power consumption: 29 µA typical
■
Gain bandwidth product: 1.3 MHz typical
■
Stable when used in gain configuration
VCC- 2
+_
In- 3
4 Out
TSV6291ICT/ILT
SC70-5/SOT23-5
6 VCC+
In+ 1
■
Micropackages: SC70-5/6, SOT23-5/6
■
Low input bias current: 1 pA typical
■
Extended temperature range: -40 to +125°C
■
4 kV human body model
VCC- 2
In- 3
+
_
5 SHDN
4 Out
TSV6290ICT/ILT
SC70-6/SOT23-6
Applications
■
Battery-powered applications
■
Portable devices
■
Signal conditioning
■
Active filtering
■
Medical instrumentation
The TSV6290 comes with a shutdown function.
The TSV6290 and TSV6291 present a high
tolerance to ESD, sustaining 4 kV for the human
body model.
Additionally, the TSV6290 and TSV6291 are
offered in SC70-5/6 and SOT23-5/6
micropackages, with extended temperature
ranges from -40° C to +125° C.
Description
The TSV6290 and the TSV6291 are single
operational amplifiers with a high bandwidth while
consuming only 29 µA. They must be used in a
gain configuration (G<-3, G>+4).
All these features make the TSV629x ideal for
sensor interfaces, battery-supplied and portable
applications, as well as active filtering.
With a very low input bias current and low offset
voltage (800 µV maximum for the A version), the
TSV629x family of devices is ideal for applications
requiring precision. The devices can operate at a
power supply ranging from 1.5 to 5.5 V, and
therefore suit battery-powered devices, extending
battery life.
March 2010
Doc ID 17117 Rev 1
1/23
www.st.com
23
Contents
TSV6290, TSV6290A, TSV6291, TSV6291A
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
3.1
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3
Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4
Shutdown function (TSV6290) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5
Optimization of DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6
Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7
PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.8
Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1
SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2
SOT23-6 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3
SC70-5 (or SOT323-5) package mechanical data . . . . . . . . . . . . . . . . . . 18
4.4
SC70-6 (or SOT323-6) package mechanical data . . . . . . . . . . . . . . . . . . 19
5
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2/23
Doc ID 17117 Rev 1
TSV6290, TSV6290A, TSV6291, TSV6291A
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Vin
Iin
SHDN
Parameter
(1)
Supply voltage
Differential input voltage
Input voltage
(3)
Input current
(4)
(2)
(3)
Shutdown voltage
Value
Unit
6
V
±VCC
V
VCC- -0.2 to VCC+ +0.2
V
10
mA
VCC- -0.2 to VCC+ +0.2
V
-65 to +150
°C
Tstg
Storage temperature
Rthja
Thermal resistance junction to ambient(5)(6)
SC70-5
SOT23-5
SOT23-6
SC70-6
205
250
240
232
Maximum junction temperature
150
°C
4
kV
300
V
1.5
kV
200
mA
Tj
HBM: human body
ESD
MM: machine
model(7)
model(8)
CDM: charged device
model(9)
Latch-up immunity
°C/W
1. All voltage values, except differential voltage, are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. Vcc-Vin must not exceed 6 V, Vin must not exceed 6 V.
4. Input current must be limited by a resistor in series with the inputs.
5. Short-circuits can cause excessive heating and destructive dissipation.
6. Rth are typical values.
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for
all couples of pin combinations with other pins floating.
8. Machine mode: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
combinations with other pins floating.
9. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to the ground.
Table 2.
Operating conditions
Symbol
Parameter
VCC
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
Doc ID 17117 Rev 1
Value
Unit
1.5 to 5.5
V
VCC- -0.1 to VCC+ +0.1
V
-40 to +125
°C
3/23
Electrical characteristics
TSV6290, TSV6290A, TSV6291, TSV6291A
2
Electrical characteristics
Table 3.
Electrical characteristics at VCC+ = +1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C,
and RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
DVio
Offset voltage
TSV6290-TSV6291
TSV6290A-TSV6291A
4
0.8
Tmin < Top < Tmax
TSV6290-TSV6291
TSV6290A-TSV6291A
6
2
mV
μV/°C
Input offset voltage drift
2
Input offset current(1)
(Vout = VCC/2)
1
10
Iio
1
100
Input bias current(1)
(Vout = VCC/2)
1
10
Iib
1
100
CMR
Common mode rejection ratio
20 log (ΔVic/ΔVio)
Avd
Large signal voltage gain
VOH
High level output voltage
VOL
Low level output voltage
pA
Tmin < Top < Tmax
0 V to 1.8 V, Vout = 0.9 V
53
Tmin < Top < Tmax
51
RL= 10 kΩ, Vout= 0.5 V to 1.3 V
78
Tmin < Top < Tmax
73
RL = 10 kΩ
35
Tmin < Top < Tmax
50
74
dB
95
dB
5
mV
RL = 10 kΩ
4
Iout
Isource
Supply current (per operator)
50
Vout = 1.8 V
6
Tmin < Top < Tmax
4
Vout = 0 V
6
Tmin < Top < Tmax
4
No load, Vout = VCC/2
35
mV
Tmin < Top < Tmax
Isink
ICC
pA
Tmin < Top < Tmax
12
mA
10
mA
25
Tmin < Top < Tmax
31
µA
33
AC performance
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
1.1
MHz
Gain
Minimum gain for stability
Phase margin = 60°, Rf = 10 kΩ,
RL = 10 kΩ, CL = 20 pF
+4
-3
V/V
Slew rate
RL = 10 kΩ, CL = 100 pF,
Vout = 0.5 V to 1.3 V
0.33
V/μs
SR
1. Guaranteed by design.
4/23
Doc ID 17117 Rev 1
TSV6290, TSV6290A, TSV6291, TSV6291A
Table 4.
Electrical characteristics
Shutdown characteristics VCC = 1.8 V (TSV6290)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
2.5
50
nA
Tmin < Top < 85° C
200
nA
Tmin < Top < 125° C
1.5
µA
DC performance
SHDN = VCCICC
Supply current in shutdown
mode (all operators)
ton
Amplifier turn-on time
RL = 5 kΩ, Vout = VCC- to
VCC- + 0.2 V
300
ns
toff
Amplifier turn-off time
RL = 5 kΩ, Vout = VCC+ - 0.5 to
VCC+ - 0.7 V
30
ns
VIH
SHDN logic high
VIL
SHDN logic low
IIH
SHDN current high
SHDN = VCC+
10
pA
IIL
SHDN current low
SHDN = VCC-
10
pA
Output leakage in shutdown
mode
SHDN = VCC-
50
pA
Tmin < Top < Tmax
1
nA
IOLeak
1.3
V
0.5
Doc ID 17117 Rev 1
V
5/23
Electrical characteristics
Table 5.
TSV6290, TSV6290A, TSV6291, TSV6291A
VCC+ = +3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2
(unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
DC performance
TSV6290-TSV6291
TSV6290A-TSV6291A
Vio
DVio
Offset voltage
Input offset current(1)
Iib
Input bias current(1)
6
2
Tmin < Top < Tmax
Common mode rejection ratio
20 log (ΔVic/ΔVio)
Large signal voltage gain
VOH
High level output voltage
VOL
Low level output voltage
0 V to 3.3 V, Vout = 1.65 V
57
Tmin < Top < Tmax
53
RL=10 kΩ, Vout = 0.5 V to 2.8 V
81
Tmin < Top < Tmax
76
RL = 10 kΩ
35
Tmin < Top < Tmax
50
1
10
pA
1
100
pA
1
10
pA
1
100
pA
79
Iout
Isource
Supply current (per operator)
98
dB
dB
5
mV
RL = 10 kΩ
4
35
mV
50
Vout = 5 V
23
Tmin < Top < Tmax
20
Vout = 0 V
23
Tmin < Top < Tmax
20
No load, Vout = 2.5 V
dB
dB
Tmin < Top < Tmax
Isink
μV/°C
2
Tmin < Top < Tmax
Avd
ICC
mV
Tmin < Top < Tmax
TSV6290-TSV6291
TSV6290A-TSV6291A
Input offset voltage drift
Iio
CMR
4
0.8
45
mA
38
mA
26
Tmin < Top < Tmax
33
µA
35
µA
AC performance
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
1.2
MHz
Gain
Minimum gain for stability
Phase margin = 60°, Rf = 10 kΩ,
RL = 10 kΩ, CL = 20 pF
+4
-3
V/V
Slew rate
RL = 10 kΩ, CL = 100 pF,
Vout = 0.5 V to 2.8 V
0.4
V/μs
SR
1. Guaranteed by design.
6/23
Doc ID 17117 Rev 1
TSV6290, TSV6290A, TSV6291, TSV6291A
Table 6.
Electrical characteristics
VCC+ = +5 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2
(unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
DC performance
TSV6290-TSV6291
TSV6290A-TSV6291A
Vio
DVio
Offset voltage
Input offset current(1)
Iib
Input bias current(1)
SVR
6
2
Tmin < Top < Tmax
0 V to 5 V, Vout = 2.5 V
60
Tmin < Top < Tmax
55
Supply voltage rejection ratio 20 VCC = 1.8 to 5 V
log (ΔVCC/ΔVio)
Tmin < Top < Tmax
75
Common mode rejection ratio
20 log (ΔVic/ΔVio)
Large signal voltage gain
VOH
High level output voltage
VOL
Low level output voltage
1
10
pA
1
100
pA
1
10
pA
1
100
pA
80
dB
102
dB
98
dB
73
RL=10 kΩ, Vout = 0.5 V to 4.5 V
85
Tmin < Top < Tmax
80
RL = 10 kΩ
35
Tmin < Top < Tmax
50
7
mV
RL = 10 kΩ
6
Iout
Isource
Supply current (per operator)
50
Vout = 5 V
40
Tmin < Top < Tmax
35
Vout = 0 V
40
Tmin < Top < Tmax
35
No load, Vout = 2.5 V
35
mV
Tmin < Top < Tmax
Isink
μV/°C
2
Tmin < Top < Tmax
Avd
ICC
mV
Tmin < Top < Tmax
TSV6290-TSV6291
TSV6290A-TSV6291A
Input offset voltage drift
Iio
CMR
4
0.8
69
mA
74
mA
30
Tmin < Top < Tmax
36
µA
38
µA
AC performance
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
1.3
MHz
Gain
Minimum gain for stability
Phase margin = 60°, Rf = 10 kΩ,
RL = 10 kΩ, CL = 20 pF
+4
-3
V/V
Slew rate
RL = 10 kΩ, CL = 100 pF,
Vout = 0.5 V to 4.5 V
0.5
V/μs
SR
Doc ID 17117 Rev 1
7/23
Electrical characteristics
Table 6.
VCC+ = +5 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2
(unless otherwise specified) (continued)
Symbol
en
THD
TSV6290, TSV6290A, TSV6291, TSV6291A
Parameter
Min.
Equivalent input noise voltage
f = 1 kHz
Total harmonic distortion
Av = -10, fin = 1 kHz, RL=
100 kΩ,
Vicm = Vcc/2, Vin = 40 mVpp
Typ.
Max.
Unit
70
nV
-----------Hz
0.15
%
1. Guaranteed by design.
Table 7.
Shutdown characteristics VCC = 5 V (TSV6290)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
5
50
nA
Tmin < Top < 85° C
200
nA
Tmin < Top < 125° C
1.5
µA
DC performance
SHDN = VIL
ICC
ton
Amplifier turn-on time
RL = 5kΩ, Vout = VCC- to
VCC- + 0.2V
300
ns
toff
Amplifier turn-off time
RL = 5 kΩ, Vout = VCC+ - 0.5 V to
VCC+ - 0.7 V
30
ns
VIH
SHDN logic high
VIL
SHDN logic low
IIH
SHDN current high
SHDN = VCC+
10
pA
IIL
SHDN current low
SHDN = VCC-
10
pA
Output leakage in shutdown
mode
SHDN = VCC-
50
pA
Tmin < Top < Tmax
1
nA
IOLeak
8/23
Supply current in shutdown
mode (all operators)
4.5
V
0.5
Doc ID 17117 Rev 1
V
TSV6290, TSV6290A, TSV6291, TSV6291A
Electrical characteristics
Figure 1.
Supply current vs. supply voltage
at Vicm = VCC/2
Figure 2.
Output current vs. output voltage at
VCC = 1.5 V
Figure 3.
Output current vs. output voltage at Figure 4.
VCC = 5 V
Peaking at closed loop gain = -10 at
VCC = 1.5 V and VCC = 5 V
20
Gain (dB)
15
VCC=1.5V
VCC=5V
10
Closed loop gain = -10
T=25 C,CLoad=100pF, Vicm=VCC/2,
RLoad=2.2kΩ for Iout giving
minimum stability on a typical part
5
0
10000
100000
1000000
Frequency (Hz)
Figure 5.
Peaking at closed loop gain = -3,
VCC = 1.5 V
Figure 6.
Peaking at closed loop gain = -3,
VCC = 5 V
12
12
RLoad=10kΩ
RLoad=10kΩ
10
10
6
4
RLoad=100kΩ to VCC/2
RLoad=10kΩ for Iout giving
minimum stability
on a typical part
6
RLoad=100kΩ to VCC/2
RLoad=10kΩ for Iout giving
minimum stability
on a typical part
4
2
2
0
10000
RLoad=100kΩ
8
Gain (dB)
Gain (dB)
8
RLoad=100kΩ
100000
1000000
0
10000
100000
1000000
Frequency (Hz)
Frequency (Hz)
Doc ID 17117 Rev 1
9/23
Electrical characteristics
Figure 7.
TSV6290, TSV6290A, TSV6291, TSV6291A
Positive slew rate vs. supply
voltage in closed loop
Figure 8.
Negative slew rate vs. supply
voltage in closed loop
RLoad=10kΩ, CLoad=100pF, ACL=−10
Vin: from VCC+−0.5V to 0.5V
SR calculated from 10% to 90%
Vicm=VCC/2
Slew rate (V/ s)
Slew rate (V/ s)
T=125°C
T=25°C
T=−40°C
T=125°C
T=−40°C
RLoad=10kΩ, CLoad=100pF, ACL=−10
Vin: from 0.5V to VCC+−0.5V
SR calculated from 10% to 90%
Vicm=VCC/2
T=25°C
Supply voltage (V)
Supply voltage (V)
Slew rate vs. supply voltage in open Figure 10. Slew rate timing in open loop
loop
Open loop configuration, T = 25 C
RLoad=10kΩ, CLoad=100pF,
Vin=1VPP, Vicm=VCC/2
SR calculated from 0.5V to VCC-0.5V
Amplitude (V)
Slew rate (V/ s)
Figure 9.
Open loop,RLoad=10kΩ
CLoad=100pF, Vicm=VCC/2
T=25°C, VCC=5V, Vin = 1VPP
Supply voltage (V)
Time (µs)
Amplitude (V)
RLoad=10kΩ, CLoad=100pF,
Vicm=VCC/2, ACL=−10
T=25°C, VCC=5V
Vout
Vin
Figure 12. Noise at VCC = 5 V
Input equivalent noise density (nV/VHz)
Figure 11. Slew rate timing in closed loop
Vicm=2.5V
Vcc=5V
T=25 C
Frequency (Hz)
Time (µs)
10/23
Vicm=4.5V
Doc ID 17117 Rev 1
TSV6290, TSV6290A, TSV6291, TSV6291A
Figure 14. Distortion + noise vs. output
voltage at VCC = 5 V
THD + N (%)
THD + N (%)
Figure 13. Distortion + noise vs. output
voltage at VCC = 1.8 V
Electrical characteristics
Ω
Ω
Ω
Ω
Ouput voltage (Vrms)
Output voltage (Vrms)
THD + N (%)
THD + N (%)
Figure 15. Distortion + noise vs. frequency at Figure 16. Distortion + noise vs. frequency at
VCC = 1.8 V
VCC = 5 V
Ω
Ω
Ω
Ω
Frequency (Hz)
Frequency (Hz)
Doc ID 17117 Rev 1
11/23
Application information
TSV6290, TSV6290A, TSV6291, TSV6291A
3
Application information
3.1
Operating voltages
The TSV6290 and TSV6291 can operate from 1.5 to 5.5 V. Their parameters are fully
specified for 1.8, 3.3 and 5 V power supplies. However, the parameters are very stable in the
full VCC range and several characterization curves show the TSV629x characteristics at
1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges
from -40° C to +125° C.
3.2
Rail-to-rail input
The TSV6290 and TSV6291 are built with two complementary PMOS and NMOS input
differential pairs. The devices have a rail-to-rail input, and the input common-mode range is
extended from VCC- -0.1 V to VCC+ +0.1 V. The transition between the two pairs appears at
VCC+ -0.7 V. In the transition region, the performance of CMR, SVR, Vio and THD is slightly
degraded (as shown in Figure 17 and Figure 18 for Vio vs. Vicm).
Figure 17. Input offset voltage vs. input
common mode at VCC = 1.5 V
Figure 18. Input offset voltage vs. input
common mode at VCC = 5 V
The devices are guaranteed without phase reversal.
3.3
Rail-to-rail output
The operational amplifiers’ output levels can go close to the rails: 35 mV maximum above
and below the rail when connected to a 10 kΩ resistive load to VCC/2.
3.4
Shutdown function (TSV6290)
The operational amplifier is enabled when the SHDN pin is pulled high. To disable the
amplifier, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifier’s
output is in a high impedance state. The SHDN pin must never be left floating, but tied to
VCC+ or VCC-.
12/23
Doc ID 17117 Rev 1
TSV6290, TSV6290A, TSV6291, TSV6291A
Application information
The turn-on and turn-off times are calculated for an output variation of ±200 mV (Figure 19
and Figure 20 show the test configurations).
Figure 19. Test configuration for turn-on time
(Vout pulled down)
+ VCC
VCC - 0.5 V
GND
2 KΩ
GND
2 KΩ
+ VCC
Figure 20. Test configuration for turn-off time
(Vout pulled down)
+
VCC - 0.5 V
+
DUT
DUT
-
-
GND
GND
Figure 21. Turn-on time, VCC = 5 V,
Vout pulled down, T = 25° C
Figure 22. Turn-off time, VCC = 5 V,
Vout pulled down, T = 25° C
Vcc = 5V
T = 25°C
Vout
Output voltage (V)
Voltage (V)
Shutdown pulse
Vcc = 5V
T = 25°C
Vout
Shutdown pulse
Time( s)
Doc ID 17117 Rev 1
13/23
Application information
3.5
TSV6290, TSV6290A, TSV6291, TSV6291A
Optimization of DC and AC parameters
These devices use an innovative approach to reduce the spread of the main DC and AC
parameters. An internal adjustment achieves a very narrow spread of the current
consumption (29 µA typical, min/max at ±17%). Parameters linked to the current
consumption value, such as GBP, SR and AVd, benefit from this narrow dispersion.
3.6
Driving resistive and capacitive loads
These products are micropower, low-voltage operational amplifiers optimized to drive rather
large resistive loads, above 5 kΩ. For lower resistive loads, the THD level may significantly
increase.
The amplifiers have a relatively low internal compensation capacitor, making them very fast
while consuming very little. They are ideal when used in a non-inverting configuration or in
an inverting configuration in the following conditions.
●
IGainI ≥ 3 in an inverting configuration (CL = 20 pF, RL = 100 kΩ) or IgainI ≥ 10
(CL = 100 pF, RL = 100 kΩ)
●
Gain ≥ +4 in a non-inverting configuration (CL = 20 pF, RL = 100 kΩ) or gain ≥ +11
(CL = 100 pF, RL= 100 kΩ)
As these operational amplifiers are not unity gain stable, for a low closed-loop gain it is
recommended to use the TSV62x (29 µA, 420 kHz) or TSV63x (60 µA, 880 kHz) which are
unity gain stable.
Table 8.
Related products
Part #
3.7
Icc (µA) at 5 V
GBP (MHz)
Minimum gain for
stability
(CLoad = 100 pF)
SR (V/µs)
TSV620-1
29
0.42
0.14
1
TSV6290-1
29
1.3
0.5
+11
TSV630-1
60
0.88
0.34
1
TSV6390-1
60
2.4
1.1
+11
PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible
to the power supply pins.
3.8
Macromodel
An accurate macromodel of the TSV6290 and TSV6291 is available on STMicroelectronics’
web site at www.st.com. This model is a trade-off between accuracy and complexity (that is,
time simulation) of the TSV629x operational amplifiers. It emulates the nominal
performances of a typical device within the specified operating conditions mentioned in the
datasheet. It helps to validate a design approach and to select the right operational
amplifier, but it does not replace on-board measurements.
14/23
Doc ID 17117 Rev 1
TSV6290, TSV6290A, TSV6291, TSV6291A
4
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Doc ID 17117 Rev 1
15/23
Package information
4.1
TSV6290, TSV6290A, TSV6291, TSV6291A
SOT23-5 package mechanical data
Figure 23. SOT23-5L package mechanical drawing
Table 9.
SOT23-5L package mechanical data
Dimensions
Ref.
A
Millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
0.90
1.20
1.45
0.035
0.047
0.057
A1
16/23
Inches
0.15
0.006
A2
0.90
1.05
1.30
0.035
0.041
0.051
B
0.35
0.40
0.50
0.013
0.015
0.019
C
0.09
0.15
0.20
0.003
0.006
0.008
D
2.80
2.90
3.00
0.110
0.114
0.118
D1
1.90
0.075
e
0.95
0.037
E
2.60
2.80
3.00
0.102
0.110
0.118
F
1.50
1.60
1.75
0.059
0.063
0.069
L
0.10
0.35
0.60
0.004
0.013
0.023
K
0°
10°
Doc ID 17117 Rev 1
TSV6290, TSV6290A, TSV6291, TSV6291A
4.2
Package information
SOT23-6 package mechanical data
Figure 24. SOT23-6L package mechanical drawing
Table 10.
SOT23-6L package mechanical data
Dimensions
Ref.
Millimeters
Min.
A
Typ.
0.90
A1
Inches
Max.
Min.
1.45
0.035
Typ.
Max.
0.057
0.10
0.004
A2
0.90
1.30
0.035
0.051
b
0.35
0.50
0.013
0.019
c
0.09
0.20
0.003
0.008
D
2.80
3.05
0.110
0.120
E
1.50
1.75
0.060
0.069
e
0.95
0.037
H
2.60
3.00
0.102
0.118
L
0.10
0.60
0.004
0.024
°
0
10°
Doc ID 17117 Rev 1
17/23
Package information
4.3
TSV6290, TSV6290A, TSV6291, TSV6291A
SC70-5 (or SOT323-5) package mechanical data
Figure 25. SC70-5 (or SOT323-5) package mechanical drawing
SIDE VIEW
DIMENSIONS IN MM
GAUGE PLANE
COPLANAR LEADS
SEATING PLANE
TOP VIEW
Table 11.
SC70-5 (or SOT323-5) package mechanical data
Dimensions
Ref
Millimeters
Min
A
Typ
0.80
A1
18/23
Inches
Max
Min
1.10
0.315
Typ
0.043
0.10
A2
0.80
b
0.90
Max
0.004
1.00
0.315
0.035
0.15
0.30
0.006
0.012
c
0.10
0.22
0.004
0.009
D
1.80
2.00
2.20
0.071
0.079
0.087
E
1.80
2.10
2.40
0.071
0.083
0.094
E1
1.15
1.25
1.35
0.045
0.049
0.053
e
0.65
0.025
e1
1.30
0.051
L
0.26
<
0°
0.36
0.46
8°
Doc ID 17117 Rev 1
0.010
0.014
0.039
0.018
TSV6290, TSV6290A, TSV6291, TSV6291A
4.4
Package information
SC70-6 (or SOT323-6) package mechanical data
Figure 26. SC70-6 (or SOT323-6) package mechanical drawing
Table 12.
SC70-6 (or SOT323-6) package mechanical data
Dimensions
Ref
Millimeters
Min.
A
Typ.
0.80
A1
Inches
Max.
Min.
1.10
0.031
Typ.
Max.
0.043
0.10
0.004
A2
0.80
1.00
0.031
0.039
b
0.15
0.30
0.006
0.012
c
0.10
0.18
0.004
0.007
D
1.80
2.20
0.071
0.086
E
1.15
1.35
0.045
0.053
e
0.65
0.026
HE
1.80
2.40
0.071
0.094
L
0.10
0.40
0.004
0.016
Q1
0.10
0.40
0.004
0.016
Doc ID 17117 Rev 1
19/23
Package information
TSV6290, TSV6290A, TSV6291, TSV6291A
Figure 27. SC70-6 (or SOT323-6) package footprint
20/23
Doc ID 17117 Rev 1
TSV6290, TSV6290A, TSV6291, TSV6291A
5
Ordering information
Ordering information
Table 13.
Order codes
Part number
Temperature
range
Package
Packing
Marking
TSV6290ILT
SOT23-6
K106
TSV6290ICT
SC70-6
K16
TSV6290AILT
SOT23-6
K139
TSV6290AICT
SC70-6
-40°C to +125°C
K39
Tape & reel
TSV6291ILT
SOT23-5
K107
TSV6291ICT
SC70-5
K14
TSV6291AILT
SOT23-5
K113
TSV6291AICT
SC70-5
K15
Doc ID 17117 Rev 1
21/23
Revision history
6
TSV6290, TSV6290A, TSV6291, TSV6291A
Revision history
Table 14.
22/23
Document revision history
Date
Revision
04-Mar-2010
1
Changes
Initial release.
Doc ID 17117 Rev 1
TSV6290, TSV6290A, TSV6291, TSV6291A
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 17117 Rev 1
23/23