FDS8958A_F085 tm Dual N & P-Channel PowerTrench MOSFET General Description Features These dual N- and P-Channel enhancement mode power field effect transistors are produced using Fairchild Semiconductor’s advanced PowerTrench process that has been especially tailored to minimize on-state ressitance and yet maintain superior switching performance. • Q1: • Q2: P-Channel -5A, -30V RDS(on) = 0.052Ω @ VGS = -10V RDS(on) = 0.080Ω @ VGS = -4.5V • Fast switching speed • High power and handling capability in a widely used surface mount package • Qualified to AEC Q101 • RoHS Compliant DD2 DD2 5 DD1 Q2 4 6 7 G2 S2 G SO-8 Pin 1 SO-8 G1 S1 S S 3 Q1 2 8 S Absolute Maximum Ratings Symbol RDS(on) = 0.028Ω @ VGS = 10V RDS(on) = 0.040Ω @ VGS = 4.5V These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required. D1 D N-Channel 7.0A, 30V 1 TA = 25°C unless otherwise noted Parameter VDSS VGSS Drain-Source Voltage Gate-Source Voltage ID Drain Current PD - Pulsed Power Dissipation for Dual Operation Power Dissipation for Single Operation Q1 - Continuous 30 (Note 1a) ±20 -5 (Note 1a) 20 2 1.6 -20 2 1.6 W 0.9 54 0.9 13 mJ Single Pulse Avalanche Energy TJ, TSTG Operating and Storage Junction Temperature Range (Note 3) Thermal Resistance, Junction-to-Case A -55 to +150 °C (Note 1a) 78 °C/W (Note 1) 40 °C/W Thermal Characteristics Thermal Resistance, Junction-to-Ambient V V 30 EAS RθJC Units ±20 7 (Note 1c) RθJA Q2 FDS8958A_F085 Dual N & P-Channel PowerTrench® MOSFET February 2010 Package Marking and Ordering Information Device Marking Device Reel Size Tape width Quantity FDS8958A FDS8958A_F085 13” 12mm 2500 units ©2010 Fairchild Semiconductor Corporation FDS8958A_F085 Rev. A 1 www.fairchildsemi.com Symbol Parameter TA = 25°C unless otherwise noted Test Conditions Type Min Typ Max Units Off Characteristics BVDSS IGSSF Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage, Forward IGSSR Gate-Body Leakage, Reverse VGS = -20 V, ∆BVDSS ∆TJ IDSS On Characteristics ID = 250 µA VGS = 0 V, VGS = 0 V, ID = -250 µA ID = 250 µA, Referenced to 25°C ID = -250 µA, Referenced to 25°C VDS = 24 V, VGS = 0 V VDS = -24 V, VGS = 0 V VGS = 20 V, VDS = 0 V VDS = 0 V Q1 Q2 Q1 Q2 Q1 Q2 All 30 -30 V 25 -23 All mV/°C 1 -1 100 µA -100 nA 3 -3 V nA (Note 2) VGS(th) Gate Threshold Voltage ∆VGS(th) ∆TJ RDS(on) Gate Threshold Voltage Temperature Coefficient Static Drain-Source On-Resistance ID(on) On-State Drain Current gFS Forward Transconductance VDS = VGS, ID = 250 µA VDS = VGS, ID = -250 µA ID = 250 µA, Referenced to 25°C ID = -250 µA, Referenced to 25°C VGS = 10 V, ID = 7 A VGS = 10 V, ID = 7 A, TJ = 125°C ID = 6 A VGS = 4.5 V, ID = -5 A VGS = -10 V, VGS = -10 V, ID = -5 A, TJ = 125°C VGS = -4.5 V, ID = -4 A VGS = 10 V, VDS = 5 V VGS = -10 V, VDS = -5 V VDS = 5 V, ID = 7 A VDS = -5 V, ID =-5 A Q1 Q2 Q1 Q2 Q1 Q1 VDS = 15 V, VGS = 0 V, f = 1.0 MHz Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 1 -1 Q2 Q1 Q2 Q1 Q2 1.9 -1.7 -4.5 4.5 19 27 24 28 42 40 42 57 65 52 78 80 20 -20 mV/°C mΩ A 25 10 S 575 528 145 132 65 70 2.1 6.0 pF Dynamic Characteristics Ciss Input Capacitance Coss Output Capacitance Crss Q2 Reverse Transfer Capacitance VDS = -15 V, VGS = 0 V, f = 1.0 MHz RG Gate Resistance FDS8958A_F085 Rev. A VGS = 15 mV, f = 1.0 MHz 2 pF pF Ω FDS8958A_F085 Dual N & P-Channel PowerTrench® MOSFET Electrical Characteristics www.fairchildsemi.com Symbol (continued) Parameter Switching Characteristics td(on) Turn-On Delay Time tr Turn-On Rise Time td(off) Turn-Off Delay Time tf Turn-Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd Gate-Drain Charge TA = 25°C unless otherwise noted Test Conditions Type Min Typ Max Units (Note 2) Q1 VDD = 15 V, ID = 1 A, VGS = 10V, RGEN = 6 Ω Q2 VDD = -15 V, ID = -1 A, VGS = -10V, RGEN = 6 Ω Q1 VDS = 15 V, ID = 7 A, VGS = 10 V Q2 VDS = -15 V, ID = -5 A,VGS = -10 V Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 8 7 5 13 23 14 3 9 11.4 9.6 1.7 2.2 2.1 1.7 16 14 10 24 37 25 6 17 16 13 ns ns ns ns nC nC nC Drain–Source Diode Characteristics and Maximum Ratings IS Maximum Continuous Drain-Source Diode Forward Current ISM Maximum Plused Drain-Source Diode Forward Current VSD Drain-Source Diode Forward Voltage Diode Reverse Recovery Time Diode Reverse Recovery Charge trr Qrr VGS = 0 V, IS = 1.3 A VGS = 0 V, IS = -1.3 A Q1 IF = 7 A, diF/dt = 100 A/µs Q2 IF = -5 A, diF/dt = 100 A/µs (Note 2) (Note 2) (Note 2) Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 0.75 -0.88 19 19 9 6 1.3 -1.3 20 -20 1.2 -1.2 A A V nS nC Notes: 1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by design while RθCA is determined by the user' s board design. a) 78°/W when mounted on a 0.5 in2 pad of 2 oz copper b) 125°/W when 2 mounted on a .02 in pad of 2 oz copper c) 135°/W when mounted on a minimum pad. FDS8958A_F085 Dual N & P-Channel PowerTrench® MOSFET Electrical Characteristics Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0% 3. Starting TJ = 25°C, L = 3mH, IAS = 6A, VDD = 30V, VGS = 10V (Q1). Starting TJ = 25°C, L = 3mH, IAS = 3A, VDD = 30V, VGS = 10V (Q2). FDS8958A_F085 Rev. A 3 www.fairchildsemi.com VGS = 10.0V 2.2 4.0V 3.5V RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE 20 ID, DRAIN CURRENT (A) 16 6.0V 4.5V 12 8 3.0V 4 1.8 1.4 0 4.5V 5.0 6.0V 10.0V 1 0.5 1 1.5 VDS, DRAIN-SOURCE VOLTAGE (V) 2 0 Figure 1. On-Region Characteristics. 4 8 12 ID, DRAIN CURRENT (A) 16 20 Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. 1.6 0.08 ID = 7A VGS = 10.0V 1.4 RDS(ON), ON-RESISTANCE (OHM) RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE 4.0 0.6 0 1.2 1 0.8 0.6 ID = 3.5A 0.07 0.06 0.05 TA = 125oC 0.04 0.03 TA = 25oC 0.02 0.01 -50 -25 0 25 50 75 100 TJ, JUNCTION TEMPERATURE (oC) 125 150 2 Figure 3. On-Resistance Variation with Temperature. 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10 Figure 4. On-Resistance Variation with Gate-to-Source Voltage. 20 100 VGS = 0V IS, REVERSE DRAIN CURRENT (A) VDS = 5V 16 ID, DRAIN CURRENT (A) VGS = 3.5V FDS8958A_F085 Dual N & P-Channel PowerTrench® MOSFET Typical Characteristics: Q1 (N-Channel) 12 TA = 125oC -55oC 8 25oC 4 0 10 TA = 125oC 1 0.1 25oC 0.01 -55oC 0.001 0.0001 1.5 2 2.5 3 3.5 VGS, GATE TO SOURCE VOLTAGE (V) 4 0 Figure 5. Transfer Characteristics. FDS8958A_F085 Rev. A 0.2 0.4 0.6 0.8 1 VSD, BODY DIODE FORWARD VOLTAGE (V) 1.2 Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. 4 www.fairchildsemi.com 800 10 VGS, GATE-SOURCE VOLTAGE (V) ID = 7A VDS = 10V f = 1MHz VGS = 0 V 20V 8 CAPACITANCE (pF) 600 15V 6 4 2 Ciss 400 Coss 200 Crss 0 0 0 2 4 6 8 Qg, GATE CHARGE (nC) 10 0 12 Figure 7. Gate Charge Characteristics. 5 10 15 VDS, DRAIN TO SOURCE VOLTAGE (V) 20 Figure 8. Capacitance Characteristics. 100 10 ID, DRAIN CURRENT (A) 10 IAS, AVALANCHE CURRENT (A) 100µs RDS(ON) LIMIT 1ms 10ms 1s 1 100ms 10s DC VGS = 10V SINGLE PULSE RθJA = 135oC/W 0.1 o Tj=25 Tj=125 TA = 25 C 1 0.01 0.01 0.1 1 10 VDS, DRAIN-SOURCE VOLTAGE (V) 100 0.1 1 10 100 tAV, TIME IN AVALANCHE (mS) Figure 9. Maximum Safe Operating Area. Figure 10. Unclamped Inductive Switching Capability Figure FDS8958A_F085 Dual N & P-Channel PowerTrench® MOSFET Typical Characteristics: Q1 (N-Channel) P(pk), PEAK TRANSIENT POWER (W) 50 SINGLE PULSE RθJ A = 135°C/W TA = 25°C 40 30 20 10 0 0.001 0.01 0.1 1 10 100 1000 t 1, TIME (sec) Figure 11. Single Pulse Maximum Power Dissipation. FDS8958A_F085 Rev. A 5 www.fairchildsemi.com 2 -ID, DRAIN CURRENT (A) VGS = -10V -6.0V RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE 30 -5.0V -4.5V 20 -4.0V 10 -3.5V -3.0V 0 1.8 VGS=-4.0V 1.6 -4.5V 1.4 -5.0V -6.0V -7.0V 1.2 1 2 3 4 5 6 0 6 12 -VDS, DRAIN TO SOURCE VOLTAGE (V) 18 24 30 -ID, DRAIN CURRENT (A) Figure 12. On-Region Characteristics. Figure 13. On-Resistance Variation with Drain Current and Gate Voltage. 0.25 1.6 ID = -5A VGS = -10V RDS(ON), ON-RESISTANCE (OHM) RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE -10V 1 0.8 0 1.4 1.2 1 0.8 0.6 ID = -2.5A 0.2 0.15 TA = 125oC 0.1 TA = 25oC 0.05 0 -50 -25 0 25 50 75 100 125 150 2 4 TJ, JUNCTION TEMPERATURE (oC) 6 8 10 -VGS, GATE TO SOURCE VOLTAGE (V) Figure 14. On-Resistance Variation with Temperature. Figure 15. On-Resistance Variation with Gate-to-Source Voltage. 15 100 25oC TA = -55oC 12 -IS, REVERSE DRAIN CURRENT (A) VDS = -5V -ID, DRAIN CURRENT (A) -8.0V FDS8958A_F085 Dual N & P-Channel PowerTrench® MOSFET Typical Characteristics: Q2 (P-Channel) 125oC 9 6 3 0 1 1.5 2 2.5 3 3.5 4 TA = 125oC 1 25oC 0.1 -55oC 0.01 0.001 0.0001 4.5 0 -VGS, GATE TO SOURCE VOLTAGE (V) 0.2 0.4 0.6 0.8 1 1.2 1.4 -VSD, BODY DIODE FORWARD VOLTAGE (V) Figure 16. Transfer Characteristics. FDS8958A_F085 Rev. A VGS =0V 10 Figure 17. Body Diode Forward Voltage Variation with Source Current and Temperature. 6 www.fairchildsemi.com r(t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE 1 D = 0.5 R θJA (t) = r(t) * R θA R θJ A = 135 °C/W 0.2 0.1 0.1 0.05 P(pk) P(pk) 0.02 0.01 tt1 0.01 SINGLE PULSE 0.001 0.0001 0.001 tt22 T J - T A = P * R θJ A(t) Duty Cycle, D = t1 / t 2 0.01 0.1 1 10 100 1000 t1, TIME (sec) Figure 23. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design. FDS8958A_F085 Rev. A 7 www.fairchildsemi.com FDS8958A_F085 Dual N & P-Channel PowerTrench® MOSFET Typical Characteristics: Q2 (P-Channel) tm tm tm *Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I47 FDS8958A_F085 Rev. A 8 www.fairchildsemi.com FDS8958A_F085 Dual N & P-Channel PowerTrench® MOSFET TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower™ PowerTrench® FRFET® The Power Franchise® ® Auto-SPM™ Global Power ResourceSM PowerXS™ Green FPS™ Build it Now™ Programmable Active Droop™ Green FPS™ e-Series™ CorePLUS™ QFET® TinyBoost™ QS™ Gmax™ CorePOWER™ TinyBuck™ Quiet Series™ GTO™ CROSSVOLT™ TinyCalc™ IntelliMAX™ RapidConfigure™ CTL™ TinyLogic® ISOPLANAR™ Current Transfer Logic™ ™ TINYOPTO™ ® MegaBuck™ DEUXPEED TinyPower™ Dual Cool™ Saving our world, 1mW/W/kW at a time™ MICROCOUPLER™ TinyPWM™ EcoSPARK® SignalWise™ MicroFET™ TinyWire™ EfficentMax™ SmartMax™ MicroPak™ TriFault Detect™ SMART START™ MicroPak2™ ® TRUECURRENT™* MillerDrive™ SPM® μSerDes™ STEALTH™ MotionMax™ Fairchild® SuperFET™ Motion-SPM™ Fairchild Semiconductor® SuperSOT™-3 OptiHiT™ FACT Quiet Series™ UHC® SuperSOT™-6 OPTOLOGIC® FACT® ® Ultra FRFET™ ® OPTOPLANAR SuperSOT™-8 FAST ® UniFET™ SupreMOS™ FastvCore™ VCX™ SyncFET™ FETBench™ VisualMax™ Sync-Lock™ FlashWriter® * PDP SPM™ XS™ ®* FPS™ Power-SPM™ F-PFS™