ADPOW APT15GP60BDF1

APT15GP60BDF1
600V
®
POWER MOS 7 IGBT
TO-247
®
The POWER MOS 7 IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 400V, 19A
• Low Gate Charge
• 200 kHz operation @ 400V, 12A
• Ultrafast Tail Current shutoff
• SSOA rated
G
C
E
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT15GP60BDF1
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current @ TC = 25°C
56
I C2
Continuous Collector Current @ TC = 110°C
27
I CM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
1
UNIT
Volts
Amps
65
@ TC = 25°C
65A @ 600V
Switching Safe Operating Area @ TJ = 150°C
Watts
250
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
2.1
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
500
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
3000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
4-2003
MIN
Rev B
Characteristic / Test Conditions
050-7428
Symbol
1
APT15GP60BDF1
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
1685
VGE = 0V, VCE = 25V
210
Reverse Transfer Capacitance
f = 1 MHz
15
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
VCE = 300V
12
15
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 15A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
55
nC
65
A
15V, L = 100µH,VCE = 600V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
tf
Eon1
Eon2
Eoff
I C = 15A
58
R G = 5Ω
4
Eon2
td(off)
29
Current Fall Time
Turn-on Switching Energy
tr
12
VGE = 15V
Turn-off Delay Time
Eon1
µJ
121
8
Inductive Switching (125°C)
VCC = 400V
12
VGE = 15V
69
I C = 15A
88
Turn-off Delay Time
Current Fall Time
Turn-off Switching Energy
152
6
R G = 5Ω
44
Turn-on Switching Energy (Diode)
ns
130
TJ = +25°C
5
Current Rise Time
Turn-on Switching Energy
8
Inductive Switching (25°C)
VCC = 400V
55
ns
130
TJ = +125°C
267
66
µJ
268
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.50
RΘJC
Junction to Case (DIODE)
1.31
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7428
Rev B
4-2003
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT15GP60BDF1
30
TC=-55°C
TC=125°C
5
0
FIGURE 1, Output Characteristics(VGE = 15V)
100
60
40
TJ = 25°C
20
TJ = 125°C
0
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3
IC = 7.5A
2.5
IC =30A
2
IC = 15A
1.5
1
0.5
0
TC=-55°C
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
14
VCE = 480V
4
2
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
0
10
20
30
40
50
GATE CHARGE (nC)
FIGURE 4, Gate Charge
60
3.5
3
IC =30A
2.5
IC = 15A
2
IC = 7.5A
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.9
VCE = 300V
6
70
0.95
VCE = 120V
8
1.15
1.0
IC = 15A
TJ = 25°C
10
80
1.05
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
12
1.2
1.10
TC=125°C
5
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.5
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
80
TC=25°C
10
FIGURE 2, Output Characteristics (VGE = 10V)
16
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
TJ = -55°C
15
0
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
20
-25
60
50
40
30
4-2003
TC=25°C
10
25
20
10
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev B
15
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7428
20
IC, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
25
IC, COLLECTOR CURRENT (A)
30
APT15GP60BDF1
80
16
14
VGE= 10V
12
VGE= 15V
10
8
6
VCE = 400V
TJ = 25°C or 125°C
RG = 5Ω
L = 100 µH
4
2
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
18
VGE =15V,TJ=125°C
70
60
VGE =10V,TJ=125°C
50
40
VGE =15V,TJ=25°C
30
VGE =10V,TJ=25°C
20
10
VCE = 400V
RG = 5Ω
L = 100 µH
0
0
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
30
100
TJ = 25 or 125°C,VGE = 10V
80
TJ = 125°C, VGE = 10V or 15V
tf, FALL TIME (ns)
tr, RISE TIME (ns)
25
20
15
10
TJ = 25 or 125°C,VGE = 15V
5
0
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
600
700
VCE = 400V
L = 100 µH
RG = 5 Ω
500
TJ =125°C, VGE=15V
TJ =125°C,VGE=10V
400
300
200
TJ = 25°C, VGE=15V
100
TJ = 25°C, VGE=10V
0
400
300
200
100
Eon2 30A
700
Eoff 30A
600
500
400
Eon2 15A
300
Eoff 15A
200
Eon2 7.5A
100
TJ = 25°C, VGE = 10V or 15V
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
Eoff 7.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
4-2003
Rev B
800
TJ = 125°C, VGE = 10V or 15V
500
700
VCE = 400V
VGE = +15V
TJ = 125°C
0
050-7428
600
VCE = 400V
L = 100 µH
RG = 5 Ω
0
0
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
900
RG =5Ω, L = 100µH, VCE = 400V
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
700
TJ = 25°C, VGE = 10V or 15V
40
20
RG =5Ω, L = 100µH, VCE = 400V
0
60
600
VCE = 400V
VGE = +15V
RG = 5 Ω
500
Eon2 30A
Eoff 30A
400
300
200
Eon2 15A
100
0
-50
Eon2 7.5A
Eoff 15A
Eoff 7.5A
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
4,000
1,000
P
500
Coes
100
50
IC, COLLECTOR CURRENT (A)
Cies
C, CAPACITANCE ( F)
APT15GP60BDF1
70
Cres
60
50
40
30
20
10
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.50
0.9
0.40
0.7
0.30
0.5
Note:
0.20
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
0.3
t1
t2
0.10
Duty Factor D = t1/t2
0.1
0.05
10-5
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.284
0.164
Case temperature
100
50
10
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5 Ω
5
10
15 20 25 30 35 40 45 50
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Fmax = min(f max1 , f max 2 )
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
4-2003
0.00600
Rev B
0.216
Power
(Watts)
050-7428
Junction
temp. ( ”C)
FMAX, OPERATING FREQUENCY (kHz)
292
RC MODEL
APT15GP60BDF1
Gate Voltage
APT15DF60
10%
TJ = 125 C
td(on)
V CE
IC
V CC
Collector Current
tr
90%
A
10%
5%
D.U.T.
5%
Collector Voltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
TJ = 125 C
Collector Voltage
td(off)
A
tf
V CE
IC
90%
100uH
V CLAMP
10%
Switching Energy
0
Collector Current
050-7428
Rev B
4-2003
Figure 23, Turn-off Switching Waveforms and Definitions
B
A
DRIVER*
Figure 24, EON1 Test Circuit
D.U.T.
APT15GP60BDF1
TYPICAL PERFORMANCE CURVES
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT15GP60BDF1
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 94°C, Duty Cycle = 0.5)
15
RMS Forward Current
36
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
110
UNIT
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
Forward Voltage
MIN
TYP
IF = 15A
2.2
IF = 30A
2.7
IF = 15A, TJ = 150°C
1.6
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
trr1
Reverse Recovery Time
TJ = 25°C
56
trr2
IF = 15A, diF /dt = -200A/µs, VR = 400V
TJ = 100°C
58
tfr1
Forward Recovery Time
TJ = 25°C
106
tfr2
IF = 15A, diF /dt = 200A/µs, VR = 400V
TJ = 100°C
106
IRRM1
Maximum Reverse Recovery Current
TJ = 25°C
2.3
IRRM2
IF = 15A, diF /dt = -200A/µs, VR = 400V
TJ = 100°C
6
Qrr1
Reverse Recovery Charge
TJ = 25°C
77
Qrr2
IF = 15A, diF /dt = -200A/µs, VR = 400V
TJ = 100°C
235
Vfr1
Forward Recovery Voltage
TJ = 25°C
5
Vfr2
IF = 15A, diF /dt = 200A/µs, VR = 400V
TJ = 100°C
5
MAX
UNIT
ns
Amps
nC
Volts
0.9
1.2
1.0
0.7
0.8
0.5
Note:
0.6
PDM
0.3
0.4
t2
Duty Factor D = t1/t2
0.1
0.05
Peak TJ = PDM x ZθJC + TC
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 25. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION
4-2003
10-5
SINGLE PULSE
Rev B
0.2
0
t1
050-7428
Z JC, THERMAL IMPEDANCE (°C/W)
θ
1.4
APT15GP60BDF1
500
100
TJ = 100°C
VR = 400V
TJ = 175°C
60
TJ = 100°C
TJ = 150°C
40
TJ = 25°C
20
0
0
30A
350
15A
300
250
7.5A
200
150
100
50
0
1
2
3
4
5
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 26, Forward Voltage vs. Forward Current
0
200
400
600
800
1000
diF /dt, CURRENT RATE OF DECREASE(A/µs)
Figure 27, Reverse Recovery Charge vs. Current Rate of Decrease
16
1.6
TJ = 100°C
VR = 400V
14
30A
12
10
15A
8
7.5A
6
Qrr
1.4
Kf, DYNAMIC PARAMETERS
(NORMALIZED)
IRRM, REVERSE RECOVERY CURRENT
(A)
400
4
1.2
1.0
0.8
t rr
0.6
Qrr
0.4
2
0.2
0
0.0
0
200
400
600
800
1000
diF /dt, CURRENT RATE OF DECREASE (A/µs)
Figure 28, Reverse Recovery Current vs. Current Rate of Decrease
t rr
I RRM
0
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29, Dynamic Parameters vs. Junction Temperature
100
30
120
80
30A
60
15A
7.5A
40
20
tfr, FORWARD RECOVERY TIME
(ns)
trr, REVERSE RECOVERY TIME
(ns)
TJ = 100°C
VR = 350V
15
60
t fr
10
5
40
20
TJ = 100°C
VR = 400V
IF = 15A
30
25
200
20
150
IF(AV) (A)
CJ, JUNCTION CAPACITANCE
(pF)
250
4-2003
80
0
0
200
400
600
800
1000
diF /dt, CURRENT RATE OF DECREASE (A/µs)
Figure 31, Forward Recovery Voltage/Time vs. Current Rate of Decrease
0
200
400
600
800
1000
diF /dt, CURRENT RATE OF DECREASEs (A/µs)
Figure 30, Reverse Recovery Time vs. Current Rate of Decrease
Rev B
100
20
0
0
050-7428
Vfr
25
100
15
10
50
5
0
.3
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 32, Junction Capacitance vs. Reverse Voltage
Vfr, FORWARD RECOVERY VOLTAGE
(V)
IF, FORWARD CURRENT
(A)
80
Qrr, REVERSE RECOVERY CHARGE
(nC)
450
0
25
50
75
100
125
150
Case Temperature (°C)
Figure 33, Maximum Average Forward Current vs.
CaseTemperature
APT15GP60BDF1
Vr
D.U.T.
trr/Qrr
Waveform
30µH
PEARSON 2878
CURRENT
TRANSFORMER
+15v
diF /dt Adjust
0v
-15v
Figure 10. Diode Reverse Recovery Test Circuit and Waveforms
1
IF - Forward Conduction Current
2
diF /dt - Current Rate of Decrease, Rate of Diode
Current Change Through Zero Crossing
From Positive to Negative.
IRRM - Maximum Reverse Recovery Current.
3
1
6
4
Zero
5
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
Qrr - Area Under the Curve Defined by IRRM and trr.
6
diM/dt - Maximum Rate of Current Increase During the Trailing Portion of trr.
3
0.25 IRRM
Slope = diM/dt
2
Figure 34, Diode Reverse Recovery Waveform and Definitions
RC MODEL
Junction
temp. ( ”C)
Power
(Watts)
0.698
0.00173F
0.438
0.0395F
0.165
0.670F
Case temperature
TRANSIENT THERMAL IMPEDANCE MODEL
T0-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
(Cathode)
20.80 (.819)
21.46 (.845)
3.55 (.138)
3.81 (.150)
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
Gate
Collector
(Cathode)
Emitter
(Anode)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
4-2003
19.81 (.780)
20.32 (.800)
Rev B
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
050-7428
4.50 (.177) Max.