APT15GP60BDF1 600V ® POWER MOS 7 IGBT TO-247 ® The POWER MOS 7 IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 400V, 19A • Low Gate Charge • 200 kHz operation @ 400V, 12A • Ultrafast Tail Current shutoff • SSOA rated G C E C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT15GP60BDF1 VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 56 I C2 Continuous Collector Current @ TC = 110°C 27 I CM Pulsed Collector Current SSOA PD TJ,TSTG TL 1 UNIT Volts Amps 65 @ TC = 25°C 65A @ 600V Switching Safe Operating Area @ TJ = 150°C Watts 250 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C) 2.1 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 500 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 3000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 4-2003 MIN Rev B Characteristic / Test Conditions 050-7428 Symbol 1 APT15GP60BDF1 DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 1685 VGE = 0V, VCE = 25V 210 Reverse Transfer Capacitance f = 1 MHz 15 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 VCE = 300V 12 15 Input Capacitance Coes Output Capacitance Cres VGEP Qge TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 15A SSOA Switching Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V 55 nC 65 A 15V, L = 100µH,VCE = 600V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy td(on) Turn-on Delay Time tf Eon1 Eon2 Eoff I C = 15A 58 R G = 5Ω 4 Eon2 td(off) 29 Current Fall Time Turn-on Switching Energy tr 12 VGE = 15V Turn-off Delay Time Eon1 µJ 121 8 Inductive Switching (125°C) VCC = 400V 12 VGE = 15V 69 I C = 15A 88 Turn-off Delay Time Current Fall Time Turn-off Switching Energy 152 6 R G = 5Ω 44 Turn-on Switching Energy (Diode) ns 130 TJ = +25°C 5 Current Rise Time Turn-on Switching Energy 8 Inductive Switching (25°C) VCC = 400V 55 ns 130 TJ = +125°C 267 66 µJ 268 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .50 RΘJC Junction to Case (DIODE) 1.31 Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7428 Rev B 4-2003 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT15GP60BDF1 30 TC=-55°C TC=125°C 5 0 FIGURE 1, Output Characteristics(VGE = 15V) 100 60 40 TJ = 25°C 20 TJ = 125°C 0 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3 IC = 7.5A 2.5 IC =30A 2 IC = 15A 1.5 1 0.5 0 TC=-55°C 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 14 VCE = 480V 4 2 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 0 10 20 30 40 50 GATE CHARGE (nC) FIGURE 4, Gate Charge 60 3.5 3 IC =30A 2.5 IC = 15A 2 IC = 7.5A 1.5 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature IC, DC COLLECTOR CURRENT(A) 0.9 VCE = 300V 6 70 0.95 VCE = 120V 8 1.15 1.0 IC = 15A TJ = 25°C 10 80 1.05 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 12 1.2 1.10 TC=125°C 5 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 3.5 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VGE, GATE-TO-EMITTER VOLTAGE (V) 80 TC=25°C 10 FIGURE 2, Output Characteristics (VGE = 10V) 16 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) TJ = -55°C 15 0 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE 20 -25 60 50 40 30 4-2003 TC=25°C 10 25 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev B 15 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7428 20 IC, COLLECTOR CURRENT (A) VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 25 IC, COLLECTOR CURRENT (A) 30 APT15GP60BDF1 80 16 14 VGE= 10V 12 VGE= 15V 10 8 6 VCE = 400V TJ = 25°C or 125°C RG = 5Ω L = 100 µH 4 2 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 18 VGE =15V,TJ=125°C 70 60 VGE =10V,TJ=125°C 50 40 VGE =15V,TJ=25°C 30 VGE =10V,TJ=25°C 20 10 VCE = 400V RG = 5Ω L = 100 µH 0 0 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 30 100 TJ = 25 or 125°C,VGE = 10V 80 TJ = 125°C, VGE = 10V or 15V tf, FALL TIME (ns) tr, RISE TIME (ns) 25 20 15 10 TJ = 25 or 125°C,VGE = 15V 5 0 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 600 700 VCE = 400V L = 100 µH RG = 5 Ω 500 TJ =125°C, VGE=15V TJ =125°C,VGE=10V 400 300 200 TJ = 25°C, VGE=15V 100 TJ = 25°C, VGE=10V 0 400 300 200 100 Eon2 30A 700 Eoff 30A 600 500 400 Eon2 15A 300 Eoff 15A 200 Eon2 7.5A 100 TJ = 25°C, VGE = 10V or 15V 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current Eoff 7.5A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 4-2003 Rev B 800 TJ = 125°C, VGE = 10V or 15V 500 700 VCE = 400V VGE = +15V TJ = 125°C 0 050-7428 600 VCE = 400V L = 100 µH RG = 5 Ω 0 0 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 900 RG =5Ω, L = 100µH, VCE = 400V 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 700 TJ = 25°C, VGE = 10V or 15V 40 20 RG =5Ω, L = 100µH, VCE = 400V 0 60 600 VCE = 400V VGE = +15V RG = 5 Ω 500 Eon2 30A Eoff 30A 400 300 200 Eon2 15A 100 0 -50 Eon2 7.5A Eoff 15A Eoff 7.5A -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 4,000 1,000 P 500 Coes 100 50 IC, COLLECTOR CURRENT (A) Cies C, CAPACITANCE ( F) APT15GP60BDF1 70 Cres 60 50 40 30 20 10 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.50 0.9 0.40 0.7 0.30 0.5 Note: 0.20 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.60 0.3 t1 t2 0.10 Duty Factor D = t1/t2 0.1 0.05 10-5 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.284 0.164 Case temperature 100 50 10 FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5 Ω 5 10 15 20 25 30 35 40 45 50 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Fmax = min(f max1 , f max 2 ) f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 4-2003 0.00600 Rev B 0.216 Power (Watts) 050-7428 Junction temp. ( ”C) FMAX, OPERATING FREQUENCY (kHz) 292 RC MODEL APT15GP60BDF1 Gate Voltage APT15DF60 10% TJ = 125 C td(on) V CE IC V CC Collector Current tr 90% A 10% 5% D.U.T. 5% Collector Voltage Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage TJ = 125 C Collector Voltage td(off) A tf V CE IC 90% 100uH V CLAMP 10% Switching Energy 0 Collector Current 050-7428 Rev B 4-2003 Figure 23, Turn-off Switching Waveforms and Definitions B A DRIVER* Figure 24, EON1 Test Circuit D.U.T. APT15GP60BDF1 TYPICAL PERFORMANCE CURVES ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. APT15GP60BDF1 Characteristic / Test Conditions Maximum Average Forward Current (TC = 94°C, Duty Cycle = 0.5) 15 RMS Forward Current 36 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) 110 UNIT Amps STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions Forward Voltage MIN TYP IF = 15A 2.2 IF = 30A 2.7 IF = 15A, TJ = 150°C 1.6 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic MIN TYP trr1 Reverse Recovery Time TJ = 25°C 56 trr2 IF = 15A, diF /dt = -200A/µs, VR = 400V TJ = 100°C 58 tfr1 Forward Recovery Time TJ = 25°C 106 tfr2 IF = 15A, diF /dt = 200A/µs, VR = 400V TJ = 100°C 106 IRRM1 Maximum Reverse Recovery Current TJ = 25°C 2.3 IRRM2 IF = 15A, diF /dt = -200A/µs, VR = 400V TJ = 100°C 6 Qrr1 Reverse Recovery Charge TJ = 25°C 77 Qrr2 IF = 15A, diF /dt = -200A/µs, VR = 400V TJ = 100°C 235 Vfr1 Forward Recovery Voltage TJ = 25°C 5 Vfr2 IF = 15A, diF /dt = 200A/µs, VR = 400V TJ = 100°C 5 MAX UNIT ns Amps nC Volts 0.9 1.2 1.0 0.7 0.8 0.5 Note: 0.6 PDM 0.3 0.4 t2 Duty Factor D = t1/t2 0.1 0.05 Peak TJ = PDM x ZθJC + TC 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 25. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION 4-2003 10-5 SINGLE PULSE Rev B 0.2 0 t1 050-7428 Z JC, THERMAL IMPEDANCE (°C/W) θ 1.4 APT15GP60BDF1 500 100 TJ = 100°C VR = 400V TJ = 175°C 60 TJ = 100°C TJ = 150°C 40 TJ = 25°C 20 0 0 30A 350 15A 300 250 7.5A 200 150 100 50 0 1 2 3 4 5 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 26, Forward Voltage vs. Forward Current 0 200 400 600 800 1000 diF /dt, CURRENT RATE OF DECREASE(A/µs) Figure 27, Reverse Recovery Charge vs. Current Rate of Decrease 16 1.6 TJ = 100°C VR = 400V 14 30A 12 10 15A 8 7.5A 6 Qrr 1.4 Kf, DYNAMIC PARAMETERS (NORMALIZED) IRRM, REVERSE RECOVERY CURRENT (A) 400 4 1.2 1.0 0.8 t rr 0.6 Qrr 0.4 2 0.2 0 0.0 0 200 400 600 800 1000 diF /dt, CURRENT RATE OF DECREASE (A/µs) Figure 28, Reverse Recovery Current vs. Current Rate of Decrease t rr I RRM 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29, Dynamic Parameters vs. Junction Temperature 100 30 120 80 30A 60 15A 7.5A 40 20 tfr, FORWARD RECOVERY TIME (ns) trr, REVERSE RECOVERY TIME (ns) TJ = 100°C VR = 350V 15 60 t fr 10 5 40 20 TJ = 100°C VR = 400V IF = 15A 30 25 200 20 150 IF(AV) (A) CJ, JUNCTION CAPACITANCE (pF) 250 4-2003 80 0 0 200 400 600 800 1000 diF /dt, CURRENT RATE OF DECREASE (A/µs) Figure 31, Forward Recovery Voltage/Time vs. Current Rate of Decrease 0 200 400 600 800 1000 diF /dt, CURRENT RATE OF DECREASEs (A/µs) Figure 30, Reverse Recovery Time vs. Current Rate of Decrease Rev B 100 20 0 0 050-7428 Vfr 25 100 15 10 50 5 0 .3 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 32, Junction Capacitance vs. Reverse Voltage Vfr, FORWARD RECOVERY VOLTAGE (V) IF, FORWARD CURRENT (A) 80 Qrr, REVERSE RECOVERY CHARGE (nC) 450 0 25 50 75 100 125 150 Case Temperature (°C) Figure 33, Maximum Average Forward Current vs. CaseTemperature APT15GP60BDF1 Vr D.U.T. trr/Qrr Waveform 30µH PEARSON 2878 CURRENT TRANSFORMER +15v diF /dt Adjust 0v -15v Figure 10. Diode Reverse Recovery Test Circuit and Waveforms 1 IF - Forward Conduction Current 2 diF /dt - Current Rate of Decrease, Rate of Diode Current Change Through Zero Crossing From Positive to Negative. IRRM - Maximum Reverse Recovery Current. 3 1 6 4 Zero 5 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 Qrr - Area Under the Curve Defined by IRRM and trr. 6 diM/dt - Maximum Rate of Current Increase During the Trailing Portion of trr. 3 0.25 IRRM Slope = diM/dt 2 Figure 34, Diode Reverse Recovery Waveform and Definitions RC MODEL Junction temp. ( ”C) Power (Watts) 0.698 0.00173F 0.438 0.0395F 0.165 0.670F Case temperature TRANSIENT THERMAL IMPEDANCE MODEL T0-247 Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector (Cathode) 20.80 (.819) 21.46 (.845) 3.55 (.138) 3.81 (.150) 1.01 (.040) 1.40 (.055) 2.21 (.087) 2.59 (.102) Gate Collector (Cathode) Emitter (Anode) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 4-2003 19.81 (.780) 20.32 (.800) Rev B 0.40 (.016) 0.79 (.031) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 050-7428 4.50 (.177) Max.