BB304M Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier ADE-208-605C (Z) 4th. Edition August 1998 Features • Build in Biasing Circuit; To reduce using parts cost & PC board space. • High gain; (PG = 29 dB typ. at f = 200 MHz) • Low noise characteristics; (NF = 1.2 dB typ. at f = 200 MHz) • Wide supply voltage range; Applicable with 5V to 9V supply voltage. • Withstanding to ESD; Build in ESD absorbing diode. Withstand up to 200V at C=200pF, Rs=0 conditions. Provide mini mold packages; MPAK-4(SOT-143mod) Outline MPAK-4 2 3 1 4 1. Source 2. Gate1 3. Gate2 4. Drain Note: 1. Marking is “DW–”. 2. BB304M is individual type number of HITACHI BBFET. BB304M Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit Drain to source voltage VDS 12 V Gate1 to source voltage VG1S +10 V –0 Gate2 to source voltage VG2S ±10 V Drain current ID 25 mA Channel power dissipation Pch 150 mW Channel temperature Tch 150 °C Storage temperature Tstg –55 to +150 °C Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test Conditions Drain to source breakdown voltage V(BR)DSS 12 — — V I D = 200µA, VG1S = VG2S = 0 Gate1 to source breakdown voltage V(BR)G1SS +10 — — V I G1 = +10µA, VG2S = VDS = 0 Gate2 to source breakdown voltage V(BR)G2SS ±10 — — V I G2 = ±10µA, VG1S = VDS = 0 Gate1 to source cutoff current I G1SS — — +100 nA VG1S = +9V, V G2S = VDS = 0 Gate2 to source cutoff current I G2SS — — ±100 nA VG2S = ±9V, VG1S = VDS = 0 Gate1 to source cutoff voltage VG1S(off) 0.4 — 1.0 V VDS = 5V, VG2S = 4V I D = 100µA Gate2 to source cutoff voltage VG2S(off) 0.5 — 1.0 V VDS = 5V, VG1S = 5V I D = 100µA 2 BB304M Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test Conditions Input capacitance c iss 2.3 2.8 3.6 pF VDS = 5V, VG1 = 5V, VG2S =4V Output capacitance c oss 0.9 1.3 2.0 pF RG = 180kΩ, f = 1MHz Reverse transfer capacitance c rss 0.003 0.02 0.05 pF Drain current I D(op) 1 9 15 19 mA VDS = 5V, VG1 = 5V, VG2S = 4V RG = 180kΩ I D(op) 2 — 13 — mA VDS = 9V, VG1 = 9V, VG2S =6V RG = 470kΩ |yfs|1 22 27 34 mS VDS = 5V, VG1 = 5V, VG2S =4V RG = 180kΩ, f = 1kHz |yfs|2 — 27 — mS VDS = 9V, VG1 = 9V, VG2S =6V RG = 470kΩ, f = 1kHz PG1 24 29 32 dB VDS = 5V, VG1 = 5V, VG2S =4V RG = 180kΩ, f = 200MHz PG2 — 29 — dB VDS = 9V, VG1 = 9V, VG2S =6V RG = 470kΩ, f = 200MHz NF1 — 1.2 1.9 dB VDS = 5V, VG1 = 5V, VG2S =4V RG = 180kΩ, f = 200MHz NF2 — 1.2 — dB VDS = 9V, VG1 = 9V, VG2S =6V RG = 470kΩ, f = 200MHz Forward transfer admittance Power gain Noise figure 3 BB304M Main Characteristics Test Circuit for Operating Items (I , |yfs|, Ciss, Coss, Crss, NF, PG) D(op) VG2 VG1 RG Gate 1 Gate 2 A ID Drain Source Power Gain, Noise Figure Test Circuit 1000p 1000p 47k VT VG2 VT 1000p 47k 1000p 47k BBFET Output(50 ¶) 1000p L2 Input(50 ¶) L1 10p max 1000p 1000p 36p 1SV70 RG RFC 470k 1SV70 1000p V D = VG1 Unit @Resistance @( ¶) @ @ Capacitance @(F) L1 : 1mm Enameled Copper Wire,Inside dia 10mm, 2Turns L2 : 1mm Enameled Copper Wire,Inside dia 10mm, 2Turns RFC : 1mm Enameled Copper Wire,Inside dia 5mm, 2Turns . 4 BB304M Typical Output Characteristics 25 100 50 20 15 10 82 5 0 50 100 150 0 200 Ta (°C) Drain Current vs. Gate2 to Source Voltage 8 10 V DS (V) 25 20 330 15 kW 390 k 10 5 RG 1.2 2.4 3.8 Gate2 to Source Voltage V DS = 9 V R G = 390 k W W W 470 k W 560 k W 680 k W 820 k W 1M W = 1.5 M W 4.8 6.0 VG2S (V) I D (mA) 270 k Drain Current V DS = V G1 = 9 V 0 2 4 6 Drain to Source Voltage W 1M W = 1.5 M Drain Current vs. Gate1 Voltage 25 I D (mA) kW 0 47 W 0k 56 k W 0 68 0 kW RG mbient Temperature Drain Current 0k W 39 33 0 0 kW k W 150 V G2S = 6 V V G1 = VDS 27 I D (mA) 200 Drain Current Channel Power Dissipation Pch (mW) Maximum Channel Power Dissipation Curve 20 6V 15 5V 4V 10 3V 2V 5 V G2S = 1 V 0 2 4 6 8 Gate1 Voltage V G1 (V) 10 5 BB304M Drain Current vs. Gate1 Voltege Drain Current vs. Gate1 Voltege 15 10 V DS = 9 V R G = 470 k W I D (mA) 20 25 6V 5V 4V 3V 2V 5 Drain Current Drain Current I D (mA) 25 20 V DS = 9 V R G = 560 k W 15 6V 5V 4V 3V 10 2V 5 V G2S = 1 V 6 30 2 4 6 8 Gate1 Voltage VG1 (V) Forward Transfer Admittance vs. Gate1 Voltage 6V V DS = 9 V R G = 390 k W 5V 4V 24 f = 1 kHz 3V 2V 18 12 6 V G2S = 1 V 0 2 4 6 8 Gate1 Voltage VG1 (V) 0 10 Forward Transfer Admittance |y fs | (mS) Forward Transfer Admittance |y fs | (mS) 0 V G2S = 1 V 10 2 4 6 8 Q [ g1 d ‡ G1 V 10 (V) Forward Transfer Admittance vs. Gate1 Voltage 30 6V V DS = 9 V 5V R G = 470 k W 4V 24 f = 1 kHz 3V 2V 18 12 6 V G2S = 1 V 0 2 4 6 8 Gate1 Voltage VG1 (V) 10 BB304M Power Gain vs. Gate Resistance 40 30 24 V DS = 9 V R G = 560 k W f = 1 kHz 6V 5V 4V 35 Power Gain PG (dB) Forward Transfer Admittance |y fs | (mS) Forward Transfer Admittance vs. Gate1 Voltage 3V 18 2V 12 6 25 20 15 V G2S = 1 V 0 30 2 4 6 8 Gate1 Voltage VG1 (V) 10 0.1 10 V DS = 9 V V G1 = 9 V V G2S = 6 V f = 200 MHz 35 Power Gain PG (dB) Noise Figure NF (dB) 40 2 1 30 25 20 15 0 0.1 0.2 0.5 1 2 5 10 Gate Resistance R G (M W ) Power Gain vs. Drain Current Noise Figure vs. Gate Resistance 4 3 V DS = 9 V V G1 = 9 V V G2S = 6 V f = 200 MHz 0.2 0.5 1 2 5 Gate Resistance R G (M W) 10 10 0 V DS = 9 V V G1 = 9 V V G2S = 6 V R G = variable f = 200 MHz 5 10 15 Drain Current ID 20 25 30 (mA) 7 BB304M Noise Figure vs. Drain Current Drain Current vs. Gate Resistance 30 V DS = 9 V V G1 = 9 V V G2S = 6 V R G = variable f = 200 MHz 3 2 1 0 5 10 15 20 25 Drain Current I D (mA) Noise Figure NF (dB) 4 25 20 15 10 5 0 0.1 30 Gain Reduction vs. Gate2 to Source Voltage Input Capacitance Ciss (pF) Gain Reduction GR (dB) 20 10 8 1 2 5 10 6 V DS = 9 V V G1 = 9 V V G2S = 6 V R G = 470 k W f = 200 MHz 30 0 0.5 Input Capacitance vs. Gate2 to Source Voltage 60 40 0.2 Gate Resistance R G (M W) Drain Current I D (mA) 50 V DS = 9 V V G1 = 9 V V G2S = 6 V 5 4 3 2 V DS = 9 V V G1 = 9 V R G = 470 k W f = 1 MHz 1 0 1 2 3 4 5 6 7 Gate2 to Source Voltage V G2S (V) 1 2 3 4 5 6 Gate2 to Source Voltage V G2S (V) BB304M S21 Parameter vs. Frequency S11 Parameter vs. Frequency .8 1 .6 90° 1.5 Scale: 1 / div. 60° 120° 2 .4 3 30° 150° 4 5 .2 10 .2 0 .4 .6 .8 1 1.5 2 3 45 10 180° 0° –10 –5 –4 –.2 –3 –.4 –30° –150° –2 –.6 –.8 –1 –90° Test Condition : V DS = 9 V , V G1 = 9 V V G2S = 6 V , R G = 470 k W 50 ‘ 1000 MHz (50 MHz step) Test Condition : V DS = 9 V , V G1 = 9 V V G2S = 6 V , R G = 470 k W 50 ‘ 1000 MHz (50 MHz step) S12 Parameter vs. Frequency 90° S22 Parameter vs. Frequency Scale: 0.002 / div. .8 60° 120° –60° –120° –1.5 1 .6 1.5 2 .4 3 30° 150° 4 5 .2 10 180° 0° .2 0 .4 .6 .8 1 1.5 2 3 45 10 –10 –5 –4 –.2 –30° –150° –3 –.4 –60° –120° –90° Test Condition : V DS = 9 V , V G1 = 9 V V G2S = 6 V , R G = 470 k W 50 ‘ 1000 MHz (50 MHz step) –2 –.6 –.8 –1 –1.5 Test Condition : V DS = 9 V , V G1 = 9 V V G2S = 6 V , R G = 470 k W 50 ‘ 1000 MHz (50 MHz step) 9 BB304M Sparameter (VDS = VG1 = 9V, VG2S = 6V, RG = 470kΩ, Zo = 50Ω) S11 S21 S12 S22 f (MHz) MAG ANG MAG ANG MAG ANG MAG ANG 50 0.996 –5.3 2.74 174.0 0.00096 98.6 0.985 –1.9 100 0.993 –10.9 2.73 168.0 0.00130 84.4 0.991 –4.5 150 0.987 –16.6 2.68 162.3 0.00203 83.6 0.990 –6.5 200 0.978 –21.9 2.66 156.3 0.00285 72.3 0.988 –9.4 250 0.972 –27.4 2.63 150.4 0.00335 69.7 0.985 –11.6 300 0.954 –33.2 2.57 144.3 0.00385 68.3 0.982 –14.0 350 0.943 –38.2 2.50 138.7 0.00455 63.2 0.979 –16.2 400 0.925 –43.2 2.43 133.3 0.00488 55.4 0.975 –18.4 450 0.910 –48.0 2.37 128.0 0.00526 59.8 0.971 –21.0 500 0.893 –52.5 2.30 122.6 0.00522 56.1 0.967 –23.0 550 0.880 –57.4 2.24 117.5 0.00498 53.2 0.962 –25.2 600 0.861 –62.1 2.17 112.7 0.00512 49.1 0.957 –27.3 650 0.847 –66.1 2.10 108.1 0.00497 53.4 0.952 –29.4 700 0.829 –69.9 2.02 103.6 0.00455 53.6 0.947 –31.6 750 0.816 –74.1 1.96 99.1 0.00418 51.6 0.943 –33.7 800 0.804 –78.2 1.91 94.8 0.00372 55.7 0.937 –35.8 850 0.791 –82.4 1.85 80.4 0.00329 62.4 0.933 –38.0 900 0.779 –86.1 1.79 86.3 0.00275 73.0 0.928 –40.0 950 0.764 –89.5 1.73 82.2 0.00233 82.4 0.921 –42.1 1000 0.753 –92.4 1.68 78.3 0.00258 105.1 0.918 –44.2 10 BB304M Package Dimensions Unit: mm + 0.3 2.8 – 0.1 + 0.1 0.4 – 0.05 0.4 – 0.05 3 0.65 – 0.3 + 0.1 + 0.1 1.9 0.95 0.95 0.16 + 0.1 – 0.06 + 0.2 2.8 – 0.6 1.5 2 0 ~ 0.1 0.95 0.85 0.65 – 0.3 + 0.1 0.6 – 0.05 + 0.1 1 4 + 0.1 0.4 – 0.05 + 0.2 1.1 – 0.1 0.3 1.8 Hitachi Code EIAJ JEDEC MPAK–4 SC–61AA — 11 BB304M Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & IC Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 2000 Sierra Point Parkway Brisbane, CA 94005-1897 Tel: <1> (800) 285-1601 Fax: <1> (303) 297-0447 Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan. 12