PC915 PC915 Wide Band Linear Output Type OPIC Photocoupler ■ Features ■ Outline Dimensions 1. Wide band linear output type ( Frequency band width : TYP. 10Hz to 8MHz ) 2. Fluctuation free stable output ( Output fluctuation : TYP. ± 5% at within operating temperature 50 000hr ) 3. High isolation voltage ( Viso : 5 000V rms ) 4. Standard dual-in-line package 5. Recognized by UL, file No, E64380 Internal connection diagram 8 7 6 5 6 0.85 ± 0.2 1.2 ± 0.3 8 7 5 6.5 ± 0.5 AMP PC915 AGC 1 2 3 4 1 2 3 4 AGC : Automatic Gain Control Anode mark ■ Applications 7.62 ± 0.3 3.0 ± 0.5 3.3 ± 0.5 0.5TYP. 1. Video signal insulation in TV 2. Insulation amplifier in measuring instrument and FA equipment 3.5 ± 0.5 9.66 ± 0.5 0.5 ± 0.1 0.26 ± 0.1 2.54 ± 0.25 θ θ θ = 0 to 13 ˚ 1 2 3 4 NC Anode Cathode NC 5 6 7 8 VO V CC GND C * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input Output Parameter Forward current Reverse voltage Power dissipation Supply voltage Output power dissipation Output current *1 Isolation voltage Operating temperature Storage temperature *2 Soldering temperature ( Ta = 25˚C ) Symbol IF VR P V CC PO IO V iso T opr T stg T sol Rating 25 6 45 - 0.5 to + 13 250 - 1.0 to + 0.5 5 000 - 25 to + 85 - 55 to + 125 260 Unit mA V mW V mW mA V rms ˚C ˚C ˚C *1 40 to 60% RH, AC for 1 minute *2 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” PC915 ■ Electro-optical Characteristics Input ( Unless otherwise spcified, Ta = 25˚C ) Parameter Forward voltage Reverse voltage Terminal capacitance Supply current DC output voltage Symbol VF IR Ct I CC V ODC Output noise voltage V ONO Output AC output voltage V OAC AC output *1 Temperature characteristics voltage fluctuation *2 Forward current characteristics High frequency Transfer *3 Cut-off charac- frequency Low frequency teristics Differential gain Differential phase ∆V OAC-1 ∆V OAC-2 f CH f CL DG DP Isolation resistance R ISO Floating capacitance Cf Conditions I F = 10mA V R = 5V V = 0, f = 1MHz I F = 10mA I F = 10mA I F = 10mA, Band width = 100Hz to 4.2MHz R E = 230 Ω R E = 230 Ω , Ta = 10 to 70˚C R E = 230 to 460 Ω R E = 230 Ω R E = 230 Ω DC500V, 40 to 60% RH V = 0, f = 1MHz MIN. 4 TYP. 1.6 60 9 6 MAX. 1.8 10 250 16 8 Unit V µA pF mA V Fig. 1 1 1 - 4 - mV rms 1 0.8 1.0 1.2 V P-P 2 - ±3 - % 2 6 - ±3 8 10 +3 - 3 20 - % MHz Hz % ˚ 2 2 2 3 3 - Ω - 5 pF - 5 x 1010 1 x 1011 - *1 Fluctuation ratio of VOAC at Ta = - 10 to 70˚C on the basis of VOAC at Ta = 25˚C *2 Fluctuation ratio of VOAC at RE = 230 to 460Ω on the basis of VOAC at R E = 230 Ω *3 Frequency of VIN when V OAC falls by 3dB on the basis of VOAC when frequency of VIN in Fig. 2 is 100kHz. ■ Recommended Operating Conditions Input Output Parameter Forward bias current Supply voltage AC output voltage Symbol I FB V CC V OAC MIN. 8 8 - MAX. 15 13 4 Unit mA V V P-P Output current IO - 0.6 + 0.2 mA C terminal capacitance CC 10 - µF 0.6 PC915 ■ Test Circuit Fig.1 PC915 1 NC VCC 6 9V VO Anode 2 IF A 5 AMP + V 3 AGC Cathode C 10 µ F 8 + V 10 µF 7 4 NC GND Fig. 2 9V 100 µF 470 Ω RE PC915 1 + Tr1 50 Ω VCC 6 9V Tr2 VO Anode 2 100 µ F VIN NC 5 AMP + 1.2k Ω 3 Cathode AGC C 8 + 10µ F CRT 10 µF 7 4 NC GND Tr1 , T r2 : 2SA1029 or other same rank products V IN Waveform Sine wave 1VP - P ( Frequency ) 15kHz at measuring V OAC, ∆ VOAC - 1 and ∆ VOAC - 2 and shall be swept at measuring f CH and f CL. PC915 Fig. 3 9V 100 pF 470 Ω 230 Ω PC915 1 + Tr1 6 9V VO Anode 2 5 AMP + 3 1.2k Ω 75 Ω VCC Tr2 100 µ F ViN NC Cathode AGC C 8 + 10 µF 10µ F DG, DP Tester 7 4 NC GND Tr1 , T r2 : 2SA1029 or other same rank products 1VP-D 40IRE 100IRE V IN Waveform Superposition 40IRE wave 3.58MHz 0.067ms(1/15ms) ❈ APL (Average Picture Level ) ❈ IRE (International Radio Engineers ) 1IRE = 7.14mV (NTSC System ) Fig. 4 Forward Current vs. Ambient Temperature 30 20 Forward current I F ( mA ) 25 15 10 5 0 - 25 0 25 50 Ambient temperature T a ( ˚C) 75 85 100 APL50% PC915 Fig. 5 Power Dissipation vs. Ambient Temperature Fig. 6 Forward Current vs. Forward Voltage 300 100 Forward current I F ( mA ) Power dissipation P ( mW ) 250 200 150 100 10 T a = 0˚C 1 25˚C 50˚C 70˚C 0.1 50 0 -25 0 25 50 75 85 Ambient temperature T a 0.01 1.0 100 1.2 ( ˚C ) 1.4 1.6 1.8 2.2 Fig. 8-a Relative AC Output Voltage 1 vs. Ambient Temperature Fig. 7 Supply Current vs. Ambient Temperature 1.1 14 12 Relative AC output voltage R E = 460 Ω 10 R E = 460 Ω 8 230 Ω 150 Ω 6 4 230 Ω 150 Ω 1.0 230 Ω 150 Ω AC output voltage = 1 at T a = 25˚C, R E = 230 Ω 460 Ω 2 0 - 25 0 25 50 75 0.9 - 25 100 0 Ambient temperature T a ( ˚C ) 25 50 75 100 Ambient temperature T a ( ˚C ) Test Circuit of Relative AC Output Voltage1 vs. Ambient Temperatue Test Circuit of Supply Current 470 Ω RE 2SA 2 1029 3 Anode AMP 2SA1029 + A 5 VO + Cathode AGC 7 470 Ω 9V VCC 6 2SA1029 1.2kΩ PC915 8 C + 10 µ F 10 µ F 100 µ F Vin 50 Ω 47pF 9V 9V 100pF Supply current I CC ( mA ) 2.0 Forward voltage V F ( V ) RE 9V PC915 6 Anode 2SA 2 1029 3 Cathode 1.2 kΩ AMP 5 AGC 8 VCC VO + 10 µ F CRT C + 7 10 µ F Vin Input Waveform 1VP - P, f = 15kHz Sine wave PC915 Relative AC output voltage ( dB ) T a = 25˚C Test Circuit of Relative AC Output Voltage 2 vs. Freguency ( 1 ) 9V CE 470 Ω 0 R E = 460 Ω, C E = 47P F 2SA1029 + R E = 230 Ω, C E = 100 P F R E = 150 Ω, C E = 150 P F -5 Vin RE 9V PC915 6 Anode 2SA 100 µ F 1029 1.2 75 Ω kΩ VCC 2 3 Cathode VO 5 AMP + C 8 AGC 10 µ F Fig. 8-b Relative AC Output Voltage 2 vs. Freguency ( 1 ) + CRT 7 10 µ F Relative value of AC output voltage that is based on the voltage at f = 100kHz of Vin Vin Iuput Waveform 1VP - P , f = 15MHz Sine wave - 10 10 4 10 5 10 6 10 7 Freguency f ( Hz) T a = 25˚C Test Circuit of Relative AC Output Voltage 2 vs. Freguency ( 2 ) Relative AC output voltage ( dB ) 0 9V 470 Ω 2SA1029 + 9V PC915 Anode 2SA 2 100 µ F 1029 3 1.2 50 Ω Cathode kΩ Vin -5 RE 230 Ω 6 5 AMP AGC 8 VCC VO + + 10 µ F Relative value of AC output voltage that is based on the voltage at f = 100kHz of Vin 100pF Fig. 8-c Relative AC Output Voltage 2 vs. Freguency ( 2 ) CC 0.1 µ F CC = 10 µ F 1 µ F - 10 10 0 Vin Input Waveform 1VP - P, f= 15MHz Sine wave 10 1 10 2 10 3 10 4 Freguency f ( Hz) Fig. 9 Differential Gain vs. R E Fig.10 Differential Phase vs. R E 6 2 T a = 25˚C T a = 25˚C Differential phase DP ( deg. ) 4 Differential gain DG ( % ) CRT 7 APL10% 2 APL50% 0 APL90% -2 -4 0 0 APL90% APL50% APL10% -2 -4 -6 -8 100 200 300 RE ( Ω ) 400 500 0 100 200 300 RE ( Ω ) 400 500 PC915 Test Circuit of Differential Gain vs. R E and Differential Phase vs. R E V in Waveform AMP AGC 5 VO 10 µ F + C DG, DP 8 Tester + 100IRE Anode 2SA 2 100 µ F 1029 3 Cathode 50 Ω 1.2 kΩ VCC Superposition wave 3.58MHz 7 0.067ms(1/15ms) 10 µ F APL: Average Picture Level ■ Application Example R1 470 Ω C1 + Vin RE 230 Ω 100pF VCC 9V VCC 9V PC915 6 Tr1 Tr2 100 µ F 1.2kΩ Ri R2 75 Ω Anode 2 3 Cathode VCC VO AMP 5 AGC C 8 CC + 7 10 µ F Tr1 , T r2 : 2SA1029 or other same rank products VOUT = 2.3 is Vin = 2.3 IB VCC- VE VOUT + CO 10 µ F IB : DC flowed to infrared LED is : AC flowed to infrared LED VE : Emitter voltage of T r2 ( Between emitter and GND ) < Example of Circuit Setting > ( 1 ) Set for Gain Gain is represented by the following formula ; G = 2.3/ ( VCC -VE ) When using on condition that Gain = 1, set VCC -VE on 2.3V. So that R 1 and R 2 is determined. ( 2 ) Set for Input Resistance Set Ri on output impedance ( usually 75 Ω ) of a mounting equipment. ( 3 ) Set for R E When there is no signal ( input signal : 0 ) , set I LED flowed into infrared LED on 10 mA. ( 4 ) Set for Low Cut-off Frequency Low cut-off frequency with C terminal capacitance, C C , is represented by the following formula ; f C = 100/C C ( Hz ) ( C C : µ F value ) Then set Ci with input impedance of by-pass diode on as much value as possible on condition that f C >1/ ( 2 π CiR ) [R = R 1 R2 / ( R1 + R 2 ) ] ■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between V CC and GND near the device in order to stabilize power supply line. ( 2 ) Handle this product the same as with other integrated circuits against static electricity. ( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ” 40IRE 6 2SA1029 + Vin 9V PC915 40IRE RE 1.0VP-P 470 Ω 47pF 9V