SONY CXB1581Q

CXB1581Q
Fibre Channel Transmitter
Description
The CXB1581Q is a transmitter IC with a built-in
PLL for high-speed serial data transmission. It can
be used together with the receiver IC CXB1582Q as
a chip set, and 1062.5Mbaud, 20-bit or 531.25Mbaud,
10-bit operation can be selected.
80 pin QFP (Plastic)
Features
• Conforms to ANSI X3T11 Fibre channel standard
• Supports GLM (Gigabaud Link Module) interface
• Built-in PLL for synthesizing a low-jitter clock
• Single 3.3V power supply or dual 3.3V/5V power
supply (for 5V TTL interface) operation can be
selected.
• Low power consumption: 830mW (Typ.) when
operating with a single 3.3V power supply
• 1062.5Mbaud, 20-bit or 531.25Mbaud, 10-bit
operation can be selected.
• Test pattern (±K28.5) generation circuit
Applications
Fibre channel 1062.5Mbaud and 531.25Mbaud
communications
NC
LBEN
SDSEL
SDDIS
R_FLT
LDALM
VEEG
VCCG
VCCG
CLR∗
VCCP
VCCP
REXT
VEEP1
VEEP1
VEEP2
LPF_B
LPF_A
Pin Configuration
TCLKSEL∗
ECLKSEL∗
Structure
Bipolar silicon monolithic IC
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
VEEE 61
40 NC
39 ALTSEL∗
VEEE 62
EXCLK∗ 63
38 TPGEN
EXCLK 64
SDIN∗ 65
37 PPSEL
36 SDRSEL
SDIN 66
35 BYTSEL
VCCE 67
34 TBC_IN
VCCE 68
33 VCCG
SDOUT∗ 69
32 VEEG
SDOUT 70
31 TX19
VCCE 71
LBOUT∗ 72
30 TX18
29 TX17
LBOUT 73
28 TX16
VCCE 74
27 TX15
VCCE 75
26 TX14
PSOUT∗ 76
25 TX13
PSOUT 77
24 TX12
VEEE 78
23 TX11
TBC_OUT
VCCT3
VCCT5
TX09
FAULT
VCCG
VEET
LKDT∗
TX08
9 10 11 12 13 14 15 16 17 18 19 20
TX06
8
TX07
7
TX05
6
TX04
5
TX03
4
TX02
3
TX00
2
TX01
1
VEET
21 VEEG
VEEG
22 TX10
TJMON2 80
VCCG
TJMON1 79
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E95912A64-ST
CXB1581Q
Absolute Maximum Ratings (VEEE, VEET, VEEG, VEEP = 0V)
Item
Symbol
Max.
Unit
–0.3
4
V
VCCG – 2,
or –0.3
VCCG + 5,
or 5.5
V
Min.
Typ.
Supply voltage (excluding VCCT5)
VCC
Supply voltage for TTL output
VCCT5
TTL DC input voltage
VI_T
–0.5
5.5
V
ECL DC input voltage
VI_E
VCC – 2
VCC
V
ECL differential input voltage
VIS_E
–2
2
V
TTL output current (High level)
IOH_T
–20
0
mA
TTL output current (Low level)
IOL_T
0
20
mA
ECL output current
IO_E
–30
0
mA
Operating ambient temperature
Ta
–55
70
°C
Storage temperature
Tstg
–65
150
°C
Recommended Operating Conditions (VEEE, VEET, VEEG, VEEP = 0V)
During single 3.3V power supply operation
Item
Symbol
Min.
Typ.
Max.
Unit
3.3
3.465
V
70
°C
Supply voltage (including VCCT5)
VCC
3.135
Ambient temperature
Ta
0
During dual 3.3V/5V power supply operation (VCCT3 open)
Item
Symbol
Min.
Typ.
Max.
Unit
Supply voltage (excluding VCCT5)
VCC
3.135
3.3
3.465
V
Power supply for TTL output
VCCT5
4.75
5
5.25
V
Ambient temperature
Ta
70
°C
–2–
0
CXB1581Q
SDDIS
LBEN
SDSEL
TPGEN
ALTSEL∗
SDRSEL
BYTSEL
Block Diagram
SDIN
SDOUT
1
0
SDIN∗
SDOUT∗
LBOUT
53.125Mbaud
TX00 to 09
10
LBOUT∗
10
Parallel Data
Input Buffer
P/S Converter
531.25
or 1062.5Mbaud
53.125Mbaud
TX10 to 19
10
1
0
PSOUT
R Q
RSFF
S
FAULT
10
PSOUT∗
PPSEL
TBC_EN
TBC_IN
53.125MHz
LPF_A
53.125MHz
PLL
LPF_B
531.25 or
1062.5MHz
TBC OUT
1
0
REXT
LKDT∗
–3–
LDALM
TCLKSEL∗
EXCLK∗
R_FLT
ECLKSEL∗
EXCLK
CXB1581Q
Pin Description
Pin
No.
Type
Typical pin
I/O voltage
Equivalent circuit
Description
1, 21,
VEEG
32, 49
Power
supply
0V
—
Negative power
supplies for internal
logic gate.
2, 20,
33,50, VCCG
51
Power
supply
3.3V
—
Positive power
supplies for internal
logic gate.
Power
supply
0V
—
Negative power
supplies for TTL
output.
3, 4
Symbol
VEET
VCCT5
VCCT3
5
LKDT∗
TTL
output
LKDT∗
TTL level
PLL lock detection
signal output. This
pin outputs low level
when the PLL is
locked to TBC_IN
and operating
normally, and high
level when the PLL
is not operating
normally.
VEET
VCCT5
VCCT3
6
FAULT
TTL
output
TTL level
FAULT
FAULT signal output.
This pin is used for
the FAULT signal in
the GLM standard.
This pin outputs high
level at the rising
edge of LDALM and
low level at the falling
edge of R_RLT. (See
Table 3.)
VEET
VCCT5
VCCT3
7
TBC_OUT
TTL
output
TTL level
TBC_OUT
VEET
–4–
Transmission byte
clock output
(53.125MHz).
This clock is
generated by
frequency-dividing
the transmission bit
clock (1.0625GHz or
531.25MHz).
CXB1581Q
Pin
No.
Symbol
Type
Typical pin
I/O voltage
Equivalent circuit
Description
VCCT5
8
VCCT3
VCCT3
Power
3.3V or open
supply
VCCG
VEET
VCCT5
9
VCCT5
Power
supply
VCCT3
3.3V or 5V
VCCG
Positive power
supply for TTL
output. Set to 3.3V
when using the IC
with a single 3.3V
power supply; leave
open when using
the IC with a dual
3.3V/5V power
supply.
Positive power
supply for TTL
output. Set to 3.3V
when using the IC
with a single 3.3V
power supply; to 5V
when using the IC
with a dual 3.3V/5V
power supply.
VEET
VCCG
10
to
19
TX00 to 09
TTL
input
TTL level
Parallel data inputs
(Byte_0).
TX00 to 09
VEET
VEET
VCCG
22
to
31
TX10 to 19
TTL
input
TTL level
Parallel data inputs
(Byte_1).
TX10 to 19
VEET
VEET
–5–
CXB1581Q
Pin
No.
Symbol
Type
Typical pin
I/O voltage
Equivalent circuit
Description
VCCG
34
TBC_IN
TTL
input
TTL level
Transmission byte
clock input
(53.125MHz).
TBC_IN
VEET
VEET
VCCG
35
BYTSEL
TTL
input
TTL level
Byte selection.
(See Table 2.)
BYTSEL
VEET
VEET
VCCG
36
SDRSEL
TTL
input
TTL level
Serial data
transmission rate
selection. Setting
this pin to low level
selects 531.25Mbaud
mode and to high
level selects
1.0625Gbaud mode.
SDRSEL
VEET
VEET
VCCG
37
PPSEL
TTL
input
TTL level
Ping-Pong mode
selection. (See
Table 2 and the
Timing Charts.)
PPSEL
VEET
VEET
–6–
CXB1581Q
Pin
No.
Symbol
Type
Typical pin
I/O voltage
Equivalent circuit
Description
VCCG
38
TPGEN
TTL
input
TTL level
TPGEN
VEET
VEET
VCCG
39
ALTSEL∗
TTL
input
TTL level
ALTSEL∗
VEET
40,
41
NC
VEET
Test pattern
generation control.
Inputting high level
to this pin generates
positive or alternating
disparity K28.5 (one
of the 8B10B
conversion codes) as
the serial transfer
data.
Alternating disparity
selection. The test
pattern generated
when TPGEN is set
to high level
becomes alternating
disparity K28.5 if this
pin is set to low level,
and positive disparity
K28.5 if this pin is set
to high level.
No connection.
Open
VCCG
42
TTL
ECLKSEL∗
input
TTL high
level or 3.3V
External clock
selection. When this
pin is set to low level,
the clock input to
EXCLK is used as
the transmission bit
clock.
ECLKSEL∗
VEET
VEET
VCCG
43
TCLKSEL∗
TTL
input
TTL high
level or 3.3V
Transmission bit
clock output
selection. When this
pin is set to low level,
the transmission bit
clock is output from
PSOUT. (See Table
1.)
TCLKSEL∗
VEET
VEET
–7–
CXB1581Q
Pin
No.
Symbol
Type
Typical pin
I/O voltage
Equivalent circuit
Description
VCCG
44
SDSEL
TTL
input
TTL level
SDIN selection.
When this pin is set
to high level, the
data input to SDIN is
output unmodified
from SDOUT.
SDSEL
VEET
VEET
VCCG
45
LBEN
TTL
input
TTL level
Loop-back enable.
When this pin is set
to high level, LBOUT
functions as the
serial data output.
(See Table 1.)
LBEN
VEET
VEET
VCCG
46
SDDIS
TTL
input
TTL level
SDOUT disable.
Setting this pin to
high level fixes
SDOUT to low level
and SDOUT∗ to high
level. (See Table 1.)
SDDIS
VEET
VEET
VCCG
47
R_FLT
TTL
input
TTL level
Reset FAULT.
FAULT output goes
to low level at the
falling edge of this
signal. (See Table 3.)
R_FLT
VEET
VEET
–8–
CXB1581Q
Pin
No.
Symbol
Type
Typical pin
I/O voltage
Equivalent circuit
Description
VCCG
48
LDALM
TTL
input
TTL lebel
Laser diode alarm
signal input. FAULT
output goes to high
level at the rising
edge of this signal.
(See Table 3.)
LDALM
VEET
VEET
VCCG
52
CLR∗
TTL
input
TTL high
level or 3.3V
Internal counter clear.
Setting this signal to
low level clears the
internal counter.
CLR∗
VEET
53,
54
VCCP
Power
supply
VEET
3.3V
Positive power
supplies for internal
PLL.
—
VCCP
55
REXT
External
part
connection
pin
—
REXT
VEEP2
Connects the
resistor which
determines the VCO
center frequency.
Connect a 4.7kΩ
resistor between this
pin and VEEP1. (See
Notes on Operation
and Fig. 1.)
56,
57
VEEP1
Power
supply
0V
—
Negative power
supplies for internal
PLL.
58
VEEP2
Power
supply
0V
—
Negative power
supply for internal
PLL.
–9–
CXB1581Q
Pin
No.
Symbol
Type
Typical pin
I/O voltage
Equivalent circuit
Description
VCCP
59
LPF_A
External
part
connection
pin
LPF_A
External loop filter
connection. (See
Notes on Operation
and Fig. 1.)
LPF_B
—
VEEP2
VEEP1
VCCP
LPF_A
60
LPF_B
External
part
connection
pin
External loop filter
connection. (See
Notes on Operation
and Fig. 1.)
LPF_B
—
VEEP2
61, 62,
VEEE
78
Power
supply
VEEP1
VCCE
64
63
EXCLK
EXCLK∗
ECL
input
(differen
-tial)
VCCG
EXCLK
Open
VCCE – 1.3V
EXCLK∗
VEEE
VEEG
VCCE
66
65
SDIN
SDIN∗
ECL
input
(differen
-tial)
Negative power
supplies for ECL I/O.
—
0V
External clock inputs.
When ECLKSEL∗ is
set to low level, the
clock input to these
pins is used as the
transmission bit
clock. EXCLK is
biased to become
low level when left
open.
VCCG
SDIN
VCCE – 1.3V
ECL level
SDIN∗
VEEE
VEEG
– 10 –
Serial data inputs.
When SDSEL is set
to high level, the data
input to these pins is
output unmodified
from SDOUT.
CXB1581Q
Pin
No.
Symbol
67, 68,
71, 74, VCCE
75
Type
Typical pin
I/O voltage
Equivalent circuit
Description
Power
supply
3.3V
—
Positive power
supplies for ECL I/O.
VCCE
70
69
SDOUT
SDOUT∗
ECL
output
(differen
-tial)
SDOUT
ECL level
SDOUT∗
VEEE
Serial data outputs
for transmission.
The serial data order
is TX00 → TX19 for
1GHz mode and
TX00 → TX09
(Byte_0) or TX10 →
TX19 (Byte_1) for
531MHz mode.
VCCE
73
72
LBOUT
LBOUT∗
ECL
output
(differen
-tial)
LBOUT
ECL level
LBOUT∗
Serial data outputs
for loop-back test.
VEEE
VCCE
77
76
PSOUT
PSOUT∗
ECL
output
(differen
-tial)
PSOUT
ECL level
PSOUT∗
Parallel/serial
conversion outputs.
These outputs are
enabled when
SDSEL is high level.
(See Table 1.)
VEEE
VCCE
TJMON1
79
80
TJMON1
TJMON2
Test pin
Junction temperature
measurement.
Open
TJMON2
VEEE
– 11 –
CXB1581Q
Description of Operation Tables
TCLKSEL∗
SDSEL
LBEN
SDDIS
SDOUT
LBOUT
PSOUT
L
L
L
L
Serialized Data
Fixed to Low
Trans. Bit Clock
L
L
L
H
Fixed to Low
Fixed to Low
Trans. Bit Clock
L
L
H
L
Serialized Data
Serialized Data
Trans. Bit Clock
L
L
H
H
Fixed to Low
Serialized Data
Trans. Bit Clock
L
H
L
L
SDIN
Fixed to Low
Trans. Bit Clock
L
H
L
H
Fixed to Low
Fixed to Low
Trans. Bit Clock
L
H
H
L
SDIN
SDIN
Trans. Bit Clock
L
H
H
H
Fixed to Low
SDIN
Trans. Bit Clock
H
L
L
L
Serialized Data
Fixed to Low
Fixed to Low
H
L
L
H
Fixed to Low
Fixed to Low
Fixed to Low
H
L
H
L
Serialized Data
Serialized Data
Fixed to Low
H
L
H
H
Fixed to Low
Serialized Data
Fixed to Low
H
H
L
L
SDIN
Fixed to Low
Serialized Data
H
H
L
H
Fixed to Low
Fixed to Low
Serialized Data
H
H
H
L
SDIN
SDIN
Serialized Data
H
H
H
H
Fixed to Low
SDIN
Serialized Data
Table 1. ECL Output Selection Table
SDRSEL
BYTSEL
PPSEL
L
L
L
531Mbaud, Byte0 selected
Trans. Byte Clock
L
L
H
531Mbaud, Byte0 selected
Fixed to Low
L
H
L
531Mbaud, Byte1 selected
Trans. Byte Clock
L
H
H
531Mbaud, Byte1 selected
Fixed to Low
H
L
L
1062.5Mbaud, Ping-Pong OFF
Trans. Byte Clock
H
L
H
1062.5Mbaud, Ping-Pong ON
Trans. Byte Clock
H
H
L
1062.5Mbaud, Ping-Pong OFF
Fixed to Low
H
H
H
1062.5Mbaud, Ping-Pong ON
Fixed to Low
Operation mode
TBC_OUT
Table 2. Operation Mode Selection Table
– 12 –
CXB1581Q
LDALM
R_FLT
FAULT
L
H→L
L
L→H
L
H
H→L
L
H
L
L→H
H
L
H→L
L
L→H
L
H
H
L→H
H
H
H→L
L
Table 3. FAULT Function Table
Timing Charts
Tp_TBC
Tl_TBC
Th_TBC
2.0V
1.5V
0.8V
Tir_TBC
TBC_IN
Ts
Tif_TBC
Th
2.0V
VALID
VALID
1.5V
0.8V
Tir_TX
Tif_TX
TX00 to 19 or TX00 to 09 during Ping-Pong mode
Ts
VALID
Th
VALID
TX10 to 19 during Ping-Pong mode
– 13 –
1.5V
CXB1581Q
Electrical Characteristics
DC Characteristics (under the recommended operating conditions)
Item
Symbol
Min.
TTL high level input voltage
aVIH_T
TTL low level input voltage
VIL_T
TTL high level input current
IIH_T
TTL low level input current
IIL_T
Typ.
Max.
Unit
Conditions
2
5.5
V
0
0.8
V
20
µA
VIH = VCC
–400
µA
VIL = 0
2.2
V
IOH = –0.4mA
2.6
V
IOH = –0.4mA
0.5
V
IOL = 2mA
0.5
V
IOL = 4mA
TTL high level output voltage
Single 3.3V power supply
VOH-T
Dual 3.3V/5V power supply
TTL low level output voltage
Single 3.3V power supply
VOL_T
Dual 3.3V/5V power supply
ECL high level input voltage
VIH_E
VCC – 1.17
VCC – 0.88
V
ECL low level input voltage
VIL_E
VCC – 1.81
VCC – 1.48
V
200
1000
mV
VOH_E
VCC – 1.05
VCC – 0.81
V
50Ω terminated to VCC – 2V
ECL low level output voltage VOL_E
VCC – 1.81
VCC – 1.55
V
50Ω terminated to VCC – 2V
mV
50Ω terminated to VCC – 2V
ECL differential input voltage VIS_E
ECL high level output voltage
ECL output amplitude
VOS_E
650
Output pins open
Current consumption
Single 3.3V power supply
ICC
Dual 3.3V/5V power supply
250
313
mA
237
13
297
17
mA
mA
Power consumption
Single 3.3V power supply
Dual 3.3V/5V power supply
AC coupling input
3.3V power supply
5V power supply (VCCT5)
Output pins open
PD
0.83
1.1
W
0.85
1.12
W
– 14 –
CXB1581Q
AC Characteristics (under the recommended operating conditions)
Item
Symbol
Min.
Typ.
Max.
Unit
Conditions
TX00 to 19 rise time
Tir_TX
4.8
ns
0.8 to 2.0V
TX00 to 19 fall time
Tif_TX
4.8
ns
2.0 to 0.8V
TBC_IN rise time
Tir_TBC
2.4
ns
0.8 to 2.0V
TBC_IN fall time
Tif_TBC
2.4
ns
2.0 to 0.8V
Tor_T
3.5
ns
0.8 to 2.0V, CL = 10pF
3.2
ns
0.6 to 2.2V, CL = 10pF
3.5
ns
2.0 to 0.8V, CL = 10pF
3.2
ns
2.2 to 0.6V, CL = 10pF
TTL output rise time
Single 3.3V power supply
Dual 3.3V/5V power supply
TTL output fall time
Single 3.3V power supply
Tof_T
Dual 3.3V/5V power supply
ECL output rise time
Tor_E
400
ps
20 to 80%, CL ≤ 2pF
ECL output fall time
Tof_E
400
ps
20 to 80%, CL ≤ 2pF
TBC_IN cycle
Tp_TBC
18.2
22.2
ns
TBC_IN low time
Tl_TBC
6
ns
TBC IN high time
Th_TBC
6
ns
TX setup time
Ts
1.8
ns
TX hold time
Th
1.8
ns
Deterministic jitter (p-p)
DJ
0.02
0.07
Ul
±K28.5 serial data
output
Random jitter (p-p)
RJ
0.18
0.23
Ul
Serial data output
18.8
– 15 –
CXB1581Q
Electrical Characteristics Measurement Circuit (See Fig. 3 Power Supply Circuits regarding the power supply.)
II_T
A
Measurement device
TTL_IN
TTL_OUT
VI_T
V Vo_T
Io_T
(a) TTL I/O DC characteristics measurement circuit
Measurement device
Pulse
generator
TTL_IN
Probe
TTL_OUT
Oscilloscope
CL
CL = 10pF (including the probe capacitance)
(b) TTL I/O AC characteristics measurement circuit
II_E
A
Measurement device
ECL_IN
ECL_OUT
VI_E
50Ω
V VO_E
VCCE – 2V
(c) ECL I/O DC characteristics measurement circuit
VCCE – 2V
50Ω
Pulse
generator
VCCE – 2V
Measurement device
ECL_IN
ECL_IN∗
50Ω
ECL_OUT
Oscilloscope
ECL_OUT∗
50Ω
50Ω
50Ω Transmission Line
VCCE – 2V
VCCE – 2V
CL ≤ 2pF (input capacitance of the measurement instrument and floating capacitance)
(d) ECL I/O AC characteristics measurement circuit
VCCE – 2V
Measurement device
26.5625MHz
Pulse pattern
generator
50Ω
TBC_IN
53.125MHz
SDOUT
Oscilloscope
1.0625Gbps
20
53.125MBPS
Triger
TX00 to 19
SDOUT∗
50Ω
VCCE – 2V
(e) Jitter characteristics measurement circuit
– 16 –
CXB1581Q
Notes on Operation
1. Clock synthesizer (PLL)
The CXB1581Q has a built-in PLL-based clock synthesizer for generating the serial data transmission
frequency clock (transmission bit clock) from TBC_IN. This clock synthesizer requires an external loop filter
and an external resistor which determines the VCO center frequency. The external part circuit and
recommended constant values are shown in the figure below. The parasitic capacitance attached to the IC
pins (Pins 55, 59 and 60) which are used to connect external parts should be kept as small as possible in order
to obtain the good PLL characteristics. In addition, resistor R3 should have a small temperature coefficient to
reduce the temperature dependence of the VCO oscillation frequency.
55
56
57
58
R3
60
59
R1
R2
C1
R1: 1.5kΩ
R2: 1.5kΩ
R3: 4.7kΩ
C1: 0.01µF
Fig. 1. External Part Circuit and Recommended Constants
– 17 –
CXB1581Q
2. ECL input circuit
The ECL differential input pins (excluding EXCLK) of the CXB1581Q are biased to VBB (VCC – 1.3V) via an
18kΩ resistor in the IC. See the figures below for ECL differential input methods.
VCC = 3.3V, VEE = GND
VCC = 3.3V, VEE = GND
VBB (VCC – 1.3V)
18kΩ
18kΩ
160Ω
160Ω
3.3V ECL output buffer
ECL differential input buffer
(a) ECL differential signal from 3.3V ECL output buffer
VCC = GND, VEE = –4.5V
0.01µF
0.01µF
330Ω
ECL100K output buffer
VCC = 3.3V, VEE = GND
VBB (VCC – 1.3V)
18kΩ
18kΩ
330Ω
ECL differential input buffer
VEE
(b) ECL differential signal from ECL100K output buffer
0.01µF
VCC = 3.3V, VEE = GND
VBB (VCC – 1.3V)
18kΩ
50Ω
TRANS.
LINE
0.01µF
50Ω
18kΩ
50Ω
ECL differential input buffer
VTT (VCC – 2V)
(c) ECL differential signal from 50Ω transmission line
VCC = 3.3V, VEE = GND
VBB (VCC – 1.3V)
50Ω
TRANS.
LINE
50Ω
0.01µF
18kΩ
0.01µF
18kΩ
VTT (VCC – 2V)
ECL differential input buffer
(d) ECL single signal from 50Ω transmission line
Fig. 2. ECL Input Circuits
– 18 –
CXB1581Q
3. Power supply
Power can be supplied to the CXB1581Q by either a single 3.3V power supply or a dual 3.3V/5V power supply.
When a TTL output high level of 2.2V is sufficient (for example, when only interfacing with a 3.3V CMOS), use
a single 3.3V power supply. When a TTL output high level of greater than 2.2V is required (for example, when
interfacing with a 5V TTL/CMOS), use a dual 3.3V/5V power supply.
VCCT5 VCCT3
VCCE
VCCG
3mH
3.3V
22µF
3mH
0.1µF
22µF
VEET
VCCP
VEEE
0.1µF
22µF
VEEG
0.1µF
VEEP1 VEEP2
(a) Single 3.3V power supply
VCCT5
VCCE
VCCG
VCCP
3mH
5.0V
22µF
0.1µF
VEET
22µF
3.3V
VEEE
0.1µF
VEEG
(b) Dual 3.3V/5V power supply
Fig. 3. Power Supply Circuits
– 19 –
22µF
0.1µF
VEEP1 VEEP2
CXB1581Q
Example of Representative Characteristics
Jitter transfer (1.0625GHz operation)
5
R1 = R2 = 1.5kΩ
0
Jitter transfer [dB]
–5
R1 = R2 = 1.0kΩ
–10
–15
–20
C1 = 0.01µF
R3 = 4.7kΩ
Ta = 27°C
–25
101
102
103
104
105
Modulation frequency [MHz]
106
107
108
RJ temperature characteristics (SDOUT, 1.0625GHz operation)
15
RJ [ps-RMS-]
14
13
12
11
R1 = R2 = 1.5kΩ
C1 = 0.01µF
R3 = 4.7kΩ
TBC_IN: 53.125MHz
10
–20
0
20
40
Ta [°C]
– 20 –
60
80
CXB1581Q
Exampe of RJ measurement (SDOUT, 1.0625GHz operation)
R1 = R2 = 1.5kΩ
C1 = 0.01µF
R3 = 4.7kΩ
Ta = 27°C
RJ = 12.1ps (RMS)
[50ps/div]
[200mV/div]
Eye pattern (SDOUT, 1.0625GHz operation)
R1 = R2 = 1.5kΩ
C1 = 0.01µF
R3 = 4.7kΩ
Ta = 27°C
[200ps/div]
– 21 –
CXB1581Q
Package Outline
Unit: mm
80PIN QFP (PLASTIC)
+ 0.35
1.5 – 0.15
+ 0.1
0.127 – 0.05
16.0 ± 0.4
+ 0.4
14.0 – 0.1
60
0.1
41
40
80
21
(15.0)
61
+ 0.15
0.3 – 0.1
20
± 0.12 M
0° to 10°
0.5 ± 0.2
1
0.65
+ 0.15
0.1 – 0.1
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
QFP-80P-L03
LEAD TREATMENT
SOLDER PLATING
EIAJ CODE
LQFP080-P-1414
LEAD MATERIAL
COPPER / 42 ALLOY
PACKAGE WEIGHT
0.6g
JEDEC CODE
– 22 –