TI SN65LVDS9637

SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
The intended application of these devices and
signaling technique is both point-to-point and
multidrop (one driver and multiple receivers) data
transmission over controlled impedance media of
approximately 100 Ω. The transmission media
may be printed-circuit board traces, backplanes,
or cables. The ultimate rate and distance of data
transfer is dependent upon the attenuation
characteristics of the media and the noise
coupling to the environment.
14
4
13
5
12
6
11
7
10
8
9
VCC
4B
4A
4Y
G
3Y
3A
3B
3
2
1
20 19
4B
VCC
SN55LVDS32FK
(TOP VIEW)
1Y
4
18 4A
G
5
17 4Y
NC
6
16 NC
2Y
7
15 G
2A
8
14 3Y
9
10 11 12 13
3A
The
SN55LVDS32,
SN65LVDS32,
SN65LVDS3486, and SN65LVDS9637 are
differential line receivers that implement the
electrical characteristics of low-voltage differential
signaling (LVDS). This signaling technique lowers
the output voltage levels of 5-V differential
standard levels (such as EIA/TIA-422B) to reduce
the power, increase the switching speeds, and
allow operation with a 3.3-V supply rail. Any of the
four differential receivers provides a valid logical
output state with a ±100 mV differential input
voltage within the input common-mode voltage
range. The input common-mode voltage range
allows 1 V of ground potential difference between
two LVDS nodes.
3
3B
description
15
NC
D
16
2
1B
D
1
NC
D
D
1B
1A
1Y
G
2Y
2A
2B
GND
GND
D
D
D
SN55LVDS32 . . . J OR W
SN65LVDS32D
(Marked as LVDS32 or 65LVDS32)
(TOP VIEW)
1A
D
D
Meets or Exceeds the Requirements of
ANSI TIA/EIA-644 Standard
Operates with a Single 3.3-V Supply
Designed for Signaling Rate of Up To
400 Mbps
Differential Input Thresholds ± 100 mV Max
Typical Propagation Delay Time of 2.1 ns
Power Dissipation 60 mW Typical per
Receiver at 200 MHz
Bus-Terminal ESD Protection Exceeds 8 kV
Low-Voltage TTL (LVTTL) Logic Output
Levels
Pin-Compatible with the AM26LS32,
MC3486, and µA9637
Open-Circuit Fail Safe
2B
D
SN65LVDS3486D (Marked as LVDS3486)
(TOP VIEW)
1B
1A
1Y
1,2EN
2Y
2A
2B
GND
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
VCC
4B
4A
4Y
3,4EN
3Y
3A
3B
SN65LVDS9637D (Marked as DK637 or LVDS37)
SN65LVDS9637DGN (Marked as L37)
(TOP VIEW)
VCC
1Y
2Y
GND
The SN65LVDS32, SN65LVDS3486, and
SN65LVDS9637 are characterized for operation
from – 40°C to 85°C. The SN55LVDS32 is
characterized for operation from – 55°C to 125°C.
1
8
2
7
3
6
4
5
1A
1B
2A
2B
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2000, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
AVAILABLE OPTIONS
PACKAGE
TA
SMALL OUTLINE
(D)
– 40°C to 85°C
SN65LVDS9637D
SN65LVDS9637DGN
—
—
—
—
—
SN55LVDS32FK
SN55LVDS32J
SN55LVDS32W
– 55°C to 125°C
MSOP
(DGN)
CHIP CARRIER
(FK)
CERAMIC DIP
(J)
FLAT PACK
(W)
SN65LVDS32D
—
—
—
—
SN65LVDS3486D
—
—
—
—
’LVDS32 logic diagram
(positive logic)
G
G
1A
1B
’LVDS3486D logic diagram
(positive logic)
4
1A
12
2
1B
1,2EN
3
1Y
1
2
3
1Y
1
2A
4
6
2Y
2Y
2B
3A
3B
4A
4B
10
3A
11
9
3Y
3B
10
11
9
3Y
12
3,4EN
14
15
13
4Y
4A
4B
2
5
5
14
15
POST OFFICE BOX 655303
13
4Y
• DALLAS, TEXAS 75265
2B
2
1Y
7
6
2B
5
8
2A
2A
7
1A
1B
7
6
’LVDS9637D logic diagram
(positive logic)
3
2Y
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
Function Tables
SN55LVDS32, SN65LVDS32
SN65LVDS3486
ENABLES
DIFFERENTIAL INPUT
OUTPUT
DIFFERENTIAL INPUT
ENABLE
OUTPUT
A, B
G
G
Y
A, B
EN
Y
VID ≥ 100 mV
H
X
X
L
H
H
VID ≥ 100 mV
H
X
H
H
–100 mV < VID < 100 mV
H
X
X
L
?
?
–100 mV < VID < 100 mV
H
X
?
?
VID ≤ –100 mV
H
X
X
L
L
L
VID ≤ –100 mV
H
X
L
L
X
L
H
Z
X
L
Z
Open
H
X
X
L
H
H
Open
H
X
H
H
H = high level, L = low level, X = irrelevant, Z = high impedance (off), ? = indeterminate
logic symbol†
G
G
SN55LVDS32, SN65LVDS32
4
SN65LVDS3486
≥1
12
4
1, 2EN
EN
2
1A
1A
1B
2A
2B
3A
3B
4A
4B
6
2A
3
1
5
6
7
10
11
12
3, 4EN
2Y
14
4A
14
13
15
3Y
13
15
4B
4Y
11
9
3B
9
2Y
EN
10
3A
3Y
1Y
5
7
2B
1Y
3
1
1B
2
EN
4Y
† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Function Table
logic symbol†
SN65LVDS9637
SN65LVDS9637
DIFFERENTIAL INPUT
OUTPUT
A, B
Y
1A
VID ≥ 100 mV
–100 mV < VID < 100 mV
H
1B
?
2A
VID ≤ –100 mV
Open
L
2B
H
H = high level, L = low level, ? = indeterminate
POST OFFICE BOX 655303
8
7
6
5
2
3
1Y
2Y
† This symbol is in accordance with ANSI/IEEE Std
91-1984 and IEC Publication 617-12.
• DALLAS, TEXAS 75265
3
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
equivalent input and output schematic diagrams
EQUIVALENT OF EACH A OR B INPUT
EQUIVALENT OF G, G, 1,2EN OR
3,4EN INPUTS
VCC
VCC
300 kΩ
TYPICAL OF ALL OUTPUTS
VCC
300 kΩ
50 Ω
5Ω
Input
Y Output
A Input
7V
B Input
7V
7V
7V
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V
Input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Input voltage range, VI (A or B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65_C to 150_C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260_C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages, except differential I/O bus voltages, are with respect to the network ground terminal.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR‡
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D (8)
725 mW
5.8 mW/°C
464 mW
377 mW
—
D (16)
950 mW
7.6 mW/°C
608 mW
494 mW
—
DGN
2.14 W
17.1 mW/°C
1.37 W
1.11 W
—
FK
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
J
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
W
1000 mW
8.0 mW/°C
640 mW
520 mW
200 mW
‡ This is the inverse of the junction-to-ambient thermal resistance when board mounted and with no air flow.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
recommended operating conditions
MIN
Supply voltage, VCC
3
High-level input voltage, VIH
G, G, 1,2EN, or 3,4EN
Low-level input voltage, VIL
G, G, 1,2EN, or 3,4EN
NOM
MAX
3.3
3.6
2
Magnitude of differential input voltage, |VID|
|V
ID
2
free air temperature,
temperature TA
Operating free-air
|
V
V
0.1
Common-mode input voltage, VIC (see Figure 1)
UNIT
2.4
*
0.8
V
0.6
V
|V
ID
2
|
SN65 prefix
– 40
VCC – 0.8
85
SN55 prefix
– 55
125
V
V
°C
COMMON-MODE INPUT VOLTAGE RANGE
vs
DIFFERENTIAL INPUT VOLTAGE
VIC – Common Mode Input Voltage – V
2.5
2
Max at VCC >3.15 V
Max at VCC = 3 V
1.5
1
ÁÁ
ÁÁ
ÁÁ
0.5
Min
0
0
0.1
0.2
0.3
0.4
0.5
VID – Differential Input Voltage – V
0.6
Figure 1. VIC Versus VID and VCC
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
SN65LVDSxxxx electrical characteristics over recommended operating conditions (unless
otherwise noted)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
PARAMETER
TEST CONDITIONS
SN65LVDS32,
SN65LVDS3486,
SN65LVDS9637
MIN
VITH+
VITH–
Positive-going differential input voltage threshold
VOH
VOL
High-level output voltage
ICC
Supply current
See Figure 2 and Table 1
Negative-going differential input voltage threshold‡
IOH = –8 mA
IOL = 8 mA
Low-level output voltage
II
Input current (A or B inputs)
II(OFF)
IIH
Power-off input current (A or B inputs)
SN65LVDS32,,
SN65LVDS3486
Enabled,
SN65LVDS9637
No load
MAX
100
–100
No load
V
10
18
0.25
0.5
5.5
10
–2
–10
– 20
– 1.2
–3
VI = 3.6 V
mV
mV
0.4
Disabled
VCC = 0,
VIH = 2 V
UNIT
2.4
VI = 0
VI = 2.4 V
High-level input current (EN, G, or G inputs)
TYP†
6
V
mA
µA
20
µA
10
µA
IIL
Low-level input current (EN, G, or G inputs)
VIL = 0.8 V
10
µA
IOZ
High-impedance output current
VO = 0 or VCC
± 10
µA
† All typical values are at TA = 25°C and with VCC = 3.3 V.
‡ The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for the negative-going
differential input voltage threshold only.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁ
ÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
SN65LVDSxxxx switching characteristics over recommended operating conditions (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
SN65LVDS32,
SN65LVDS3486,
SN65LVDS9637
UNIT
MIN
TYP
MAX
tpLH
tpHL
Propagation delay time, low-to-high-level output
1.5
2.1
3
ns
Propagation delay time, high-to-low-level output
1.5
2.1
3
ns
tsk(p)
tsk(o)
Pulse skew (|tPHL – tPLH|)
0
0.4
ns
0.1
0.3
ns
1
ns
tsk(pp)
tr
Channel-to-channel output skew†
Part-to-part skew‡
CL = 10 pF,
See Figure 3
Output signal rise time, 20% to 80%
0.6
tf
tpHZ
Output signal fall time, 80% to 20%
0.7
Propagation delay time, high-level-to-high-impedance output
6.5
12
ns
tpLZ
tpZH
Propagation delay time, low-level-to-high-impedance output
5.5
12
ns
8
12
ns
Propagation delay time, high-impedance-to-high-level output
See Figure 4
ns
ns
tpZL
Propagation delay time, high-impedance-to-low-level output
3
12
ns
† tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same
direction while driving identical specified loads.
‡ tsk(pp) is the magnitude of the different in propagation delay times between any specified terminals of two devices when both devices operate
with the same supply voltages, same temperature, and have identical packages and test circuits.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
SN55LVDS32 Selectrical characteristics over recommended operating conditions (unless
otherwise noted)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
PARAMETER
TEST CONDITIONS
VITH+
VITH–
Positive-going differential input voltage threshold
VOH
VOL
High-level output voltage
Negative-going differential input voltage threshold‡
See Figure
g
2,, Table 1,, and
Note 2
IOH = –8 mA
IOL = 8 mA
Low-level output voltage
Supply current
II
Input current (A or B inputs)
II(OFF)
IIH
Power-off input current (A or B inputs)
100
–100
10
18
0.25
0.5
–2
–10
– 20
– 1.2
–3
Disabled
VI = 0
VI = 2.4 V
High-level input current (EN, G, or G inputs)
VCC = 0,
VIH = 2 V
VI = 2.4 V
mV
V
0.4
No load
UNIT
mV
2.4
Enabled,
ICC
SN55LVDS32
TYP†
MAX
MIN
6
V
mA
µA
20
µA
10
µA
IIL
Low-level input current (EN, G, or G inputs)
VIL = 0.8 V
10
µA
IOZ
High-impedance output current
VO = 0 or VCC
± 12
µA
† All typical values are at TA = 25°C and with VCC = 3.3 V.
‡ The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for the negative-going
differential input voltage threshold only.
NOTE 2: |VITH| = 200 mV for operation at – 55°C.
SN55LVDS32 switching characteristics over recommended operating conditions (unless
otherwise noted)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
PARAMETER
tpLH
tpHL
tsk(o)
tr
TEST CONDITIONS
Propagation delay time, low-to-high-level output
Propagation delay time, high-to-low-level output
Channel-to-channel output skew†
Output signal rise time, 20% to 80%
CL = 10 pF,
See Figure 3
CL = 10 pF,
pF See Figure 3
SN55LVDS32
MAX
UNIT
MIN
TYP
1.3
2.3
6
ns
1.4
2.2
6.1
ns
0.1
ns
0.6
ns
0.7
ns
tf
tpHZ
Output signal fall time, 80% to 20%
Propagation delay time, high-level-to-high-impedance output
6.5
12
ns
tpLZ
tpZH
Propagation delay time, low-level-to-high-impedance output
5.5
12
ns
8
14
ns
3
12
ns
Propagation delay time, high-impedance-to-high-level output
See Figure 4
tpZL
Propagation delay time, high-impedance-to-low-level output
† tsk(o) is the maximum delay time difference between drivers on the same device.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
PARAMETER MEASUREMENT INFORMATION
A
Y
VID
B
(VIA + VIB)/2
VIA
VIC
VO
VIB
Figure 2. Voltage Definitions
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages
APPLIED
VOLTAGES
8
RESULTING DIFFERENTIAL
INPUT VOLTAGE
RESULTING COMMONMODE INPUT VOLTAGE
VIA
1.25 V
VIB
1.15 V
VID
100 mV
VIC
1.2 V
1.15 V
1.25 V
–100 mV
1.2 V
2.4 V
2.3 V
100 mV
2.35 V
2.3 V
2.4 V
–100 mV
2.35 V
0.1 V
0V
100 mV
0.05 V
0V
0.1 V
–100 mV
0.05 V
1.5 V
0.9 V
600 mV
1.2 V
0.9 V
1.5 V
–600 mV
1.2 V
2.4 V
1.8 V
600 mV
2.1 V
1.8 V
2.4 V
–600 mV
2.1 V
0.6 V
0V
600 mV
0.3 V
0V
0.6 V
–600 mV
0.3 V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
PARAMETER MEASUREMENT INFORMATION
VID
VIA
CL 10 pF
VIB
VO
VIA
1.4 V
VIB
1V
0.4 V
0
–0.4 V
VID
tPHL
tPLH
80%
VO
20%
80%
20%
VOH
1.4 V
VOL
tf
tr
NOTES: A. All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, pulse repetition rate
(PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns.
B. CL includes instrumentation and fixture capacitance within 6 mm of the D.U.T.
Figure 3. Timing Test Circuit and Wave Forms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
PARAMETER MEASUREMENT INFORMATION
B
1.2 V
500 Ω
A
G
Inputs
(see Note A)
10 pF
(see Note B)
±
VO
VTEST
G
1,2EN or 3,4EN
2.5 V
VTEST
A
1V
2V
1.4 V
0.8 V
G, 1,2EN,
or 3,4EN
2V
1.4 V
0.8 V
tPLZ
G
tPLZ
tPZL
tPZL
Y
VTEST
2.5 V
1.4 V
VOL +0.5 V
VOL
0
1.4 V
A
G, 1,2EN,
or 3,4EN
2V
1.4 V
0.8 V
G
2V
1.4 V
0.8 V
tPHZ
tPHZ
tPZH
tPZH
VOH
VOH –0.5 V
Y
1.4 V
0
NOTES: A. All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, pulse repetition rate
(PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns.
B. CL includes instrumentation and fixture capacitance within 6 mm of the D.U.T.
Figure 4. Enable/Disable Time Test Circuit and Wave Forms
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
TYPICAL CHARACTERISTICS
SN55LVDS32, SN65LVDS32
SUPPLY CURRENT
vs
FREQUENCY
LOW-TO-HIGH PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE
Four Receivers, Loaded
Per Figure 3, Switching
Simultaneously
VCC = 3.6 V
VCC = 3.3 V
65
VCC = 3 V
55
45
35
25
15
50
150
100
200
2.7
2.5
VCC = 3 V
VCC = 3.3 V
2.3
VCC = 3.6 V
2.1
1.9
1.7
1.5
–50
f – Frequency – MHz
0
50
TA – Free-Air Temperature – °C
Figure 5
100
Figure 6
HIGH-TO-LOW PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE
t PHL(D)– High-To-Low Propagation Delay Time – ns
I CC – Supply Current – mA(rms)
75
t PLH(D)– Low-To-High Propagation Delay Time – ns
85
2.7
2.5
2.3
VCC = 3 V
2.1
VCC = 3.3 V
1.9
VCC = 3.6 V
1.7
1.5
–50
0
50
TA – Free-Air Temperature – °C
100
Figure 7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
APPLICATION INFORMATION
using an LVDS receiver with RS-422 data
Receipt of data from a TIA/EIA-422 line driver may be accomplished using a TIA/EIA-644 line receiver with the
addition of an attenuator circuit. This technique gives the user a very high-speed and low-power 422 receiver.
If the ground noise between the transmitter and receiver is not a concern (less than ±1 V), the answer can be
as simple as shown below in Figure 8. The use of a resistor divider circuit in front of the LVDS receiver attenuates
the 422 differential signal to LVDS levels.
The resistors present a total differential load of 100 Ω to match the characteristic impedance of the transmission
line and to reduce the signal 10:1. The maximum 422 differential output signal or 6 V is reduced to 600 mV. The
high input impedance of the LVDS receiver prevents input bias offsets and maintains a better than 200-mV
differential input voltage threshold at the inputs to the divider. This circuit is used in front of each LVDS channel
that also receives 422 signals.
R1
45.3 Ω
’LVDS32
R3
5.11 Ω
A
R4
5.11 Ω
B
Y
R2
45.3 Ω
NOTE A: The components used were standard values.
R1, R2 = NRC12F45R3TR, NIC Components, 45.3 Ohm, 1/8W, 1%, 1206 Package
R3, R4 = NRC12F5R11TR, NIC Components, 5.11 Ohm, 1/8W, 1%, 1206 Package
The resistor values do not need to be 1% tolerance. However, it can be difficult locating a supplier of resistors
having values less than 100 Ω in stock and readily available. The user may find other suppliers with
comparable parts having tolerances of 5% or even 10%. These parts are adequate for use in this circuit.
Figure 8. RS-422 Data Input to an LVDS Receiver Under Low Ground Noise Conditions
If ground noise between the RS-422 driver and LVDS receiver is a concern, then the common-mode voltage
must be attenuated. The circuit must then be modified to connect the node between R3 and R4 to the LVDS
receiver ground. This modification to the circuit increases the common-mode voltage from ±1 V to greater than
±4.5 V.
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
APPLICATIONS INFORMATION
The devices are generally used as building blocks for high-speed point-to-point data transmission where ground
differences are less than 1 V. Devices can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/receivers
approach ECL speeds without the power and dual supply requirements.
TRANSMISSION DISTANCE
vs
SIGNALING RATE
Transmission Distance – m
100
30% Jitter
(see Note A)
10
5% Jitter
(see Note A)
1
24 AWG UTP 96 Ω
(PVC Dielectric)
0.1
10
100
1000
Signaling Rate – Mbps
NOTE A: This parameter is the percentage of distortion of the unit interval (UI) with a pseudo-random data pattern.
Figure 9. Typical Transmission Distance Versus Signaling Rate
1
1B
VCC
16
0.1 µF
(see Note A)
100 Ω
2
3
VCC 4
5
6
1A
4B
2Y
4Y
G
2A
100 Ω
7
4A
2B
3Y
3A
0.001 µF
(see Note A)
15
1Y
G
3.3 V
14
100 Ω
(see Note B)
13
12
11
See Note C
10
100 Ω
8
GND
3B
9
NOTES: A. Place a 0.1 µF and a 0.001 µF Z5U ceramic, mica or polystyrene dielectric, 0805 size, chip capacitor between VCC and the ground
plane. The capacitors should be located as close as possible to the device terminals.
B. The termination resistance value should match the nominal characteristic impedance of the transmission media with ±10%.
C. Unused enable inputs should be tied to VCC or GND as appropriate.
Figure 10. Typical Application Circuit Schematic
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
APPLICATION INFORMATION
1/4 ’LVDS31
Strb/Data_TX
TpBias on
Twisted-Pair A
Strb/Data_Enable
TP
55 Ω
’LVDS32
5 kΩ
Data/Strobe
55 Ω
3.3 V
TP
20 kΩ
500 Ω
VG on
Twisted-Pair B
1 Arb_RX
500 Ω
20 kΩ
3.3 V
20 kΩ
500 Ω
2 Arb_RX
500 Ω
20 kΩ
3.3 V
7 kΩ
Twisted-Pair B Only
7 kΩ
10 kΩ
Port_Status
3.3 kΩ
NOTES: A.
B.
C.
D.
Resistors are leadless thick-film (0603) 5% tolerance.
Decoupling capacitance is not shown but recommended.
VCC is 3 V to 3.6 V.
The differential output voltage of the ’LVDS31 can exceed that allowed by IEEE1394.
Figure 11. 100-Mbps IEEE 1394 Transceiver
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
APPLICATION INFORMATION
fail safe
One of the most common problems with differential signaling applications is how the system responds when
no differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers, in
that its output logic state can be indeterminate when the differential input voltage is between –100 mV and
100 mV if it is within its recommended input common-mode voltage range. TI’s LVDS receiver is different in how
it handles the open-input circuit situation, however.
Open-circuit means that there is little or no input current to the receiver from the data line itself. This could be
when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver
will pull each line of the signal pair to near VCC through 300-kΩ resistors as shown in Figure 11. The fail-safe
feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the
output to a high level, regardless of the differential input voltage.
VCC
300 kΩ
300 kΩ
A
Rt
Y
B
VIT ≈ 2.3 V
Figure 12. Open-Circuit Fail Safe of the LVDS Receiver
It is only under these conditions that the output of the receiver will be valid with less than a 100-mV differential
input voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as
long as it is connected as shown in the figure. Other termination circuits may allow a dc current to ground that
could defeat the pull-up currents from the receiver and the fail-safe feature.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
APPLICATION INFORMATION
0.01 µF
1
VCC
16
0.1 µF
(see Note A)
1B
100 Ω
2
3
VCC 4
5
6
1A
4B
2Y
4Y
G
2A
100 Ω
7
4A
2B
3Y
3A
5V
1N645
(2 places)
15
1Y
G
≈3.6 V
14
100 Ω
(see Note B)
13
12
11
See Note C
10
100 Ω
8
GND
3B
9
NOTES: A. Place a 0.1 µF Z5U ceramic, mica or polystyrene dielectric, 0805 size, chip capacitor between VCC and the ground plane. The
capacitor should be located as close as possible to the device terminals.
B. The termination resistance value should match the nominal characteristic impedance of the transmission media with ±10%.
C. Unused enable inputs should be tied to VCC or GND as appropriate.
Figure 13. Operation with 5-V Supply
related information
IBIS modeling is available for this device. Please contact the local TI sales office or the TI Web site at www.ti.com
for more information.
For more application guidelines, please see the following documents:
D
D
D
D
D
D
16
Low-Voltage Differential Signalling Design Notes (TI literature number SLLA014)
Interface Circuits for TIA/EIA-644 (LVDS) (SLLA038)
Reducing EMI with LVDS (SLLA030)
Slew Rate Control of LVDS Circuits (SLLA034)
Using an LVDS Receiver with RS-422 Data (SLLA031)
Evaluating the LVDS EVM (SLLA033)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
MECHANICAL INFORMATION
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0.050 (1,27)
0.020 (0,51)
0.014 (0,35)
14
0.010 (0,25) M
8
0.008 (0,20) NOM
0.244 (6,20)
0.228 (5,80)
0.157 (4,00)
0.150 (3,81)
Gage Plane
0.010 (0,25)
1
7
0°– 8°
A
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
PINS **
0.004 (0,10)
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
4040047 / D 10/96
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
Falls within JEDEC MS-012
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
MECHANICAL INFORMATION
DGN (S-PDSO-G8)
PowerPAD PLASTIC SMALL-OUTLINE PACKAGE
0,38
0,25
0,65
8
0,25 M
5
Thermal Pad
(See Note D)
0,15 NOM
3,05
2,95
4,98
4,78
Gage Plane
0,25
1
0°– 6°
4
3,05
2,95
0,69
0,41
Seating Plane
1,07 MAX
0,15
0,05
0,10
4073271/A 01/98
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions include mold flash or protrusions.
The package thermal performance may be enhanced by attaching an external heat sink to the thermal pad. This pad is electrically
and thermally connected to the backside of the die and possibly selected leads.
E. Falls within JEDEC MO-187
PowerPAD is a trademark of Texas Instruments Incorporated.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
MECHANICAL INFORMATION
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
25
5
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
MECHANICAL INFORMATION
J (R-GDIP-T**)
CERAMIC DUAL-IN-LINE PACKAGE
14 PIN SHOWN
PINS **
14
16
18
20
A MAX
0.310
(7,87)
0.310
(7,87)
0.310
(7,87)
0.310
(7,87)
A MIN
0.290
(7,37)
0.290
(7,37)
0.290
(7,37)
0.290
(7,37)
B MAX
0.785
(19,94)
0.785
(19,94)
0.910
(23,10)
0.975
(24,77)
B MIN
0.755
(19,18)
0.755
(19,18)
C MAX
0.300
(7,62)
0.300
(7,62)
0.300
(7,62)
0.300
(7,62)
C MIN
0.245
(6,22)
0.245
(6,22)
0.245
(6,22)
0.245
(6,22)
DIM
B
8
14
C
1
7
0.065 (1,65)
0.045 (1,14)
0.100 (2,54)
0.070 (1,78)
0.020 (0,51) MIN
0.930
(23,62)
A
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.100 (2,54)
0°–15°
0.023 (0,58)
0.015 (0,38)
0.014 (0,36)
0.008 (0,20)
4040083/D 08/98
NOTES: A.
B.
C.
D.
E.
20
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS262H – JULY 1997 – REVISED MARCH 2000
MECHANICAL INFORMATION
W (R-GDFP-F16)
CERAMIC DUAL FLATPACK
Base and Seating Plane
0.285 (7,24)
0.245 (6,22)
0.006 (0,15)
0.004 (0,10)
0.085 (2,16)
0.045 (1,14)
0.045 (1,14)
0.026 (0,66)
0.305 (7,75)
0.275 (6,99)
0.355 (9,02)
0.235 (5,97)
1
0.355 (9,02)
0.235 (5,97)
16
0.019 (0,48)
0.015 (0,38)
0.050 (1,27)
0.440 (11,18)
0.371 (9,42)
0.025 (0,64)
0.015 (0,38)
8
9
1.025 (26,04)
0.745 (18,92)
4040180-3 / B 03/95
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only.
Falls within MIL-STD-1835 GDFP1-F16 and JEDEC MO-092AC
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  2000, Texas Instruments Incorporated