SITRONIX ST7033

ST
Sitronix
ST7033
4 x 96 Dot Matrix LCD Controller/Driver
1. INTRODUCTION
The ST7033 is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 96 segment and 4
common driver circuits. This chip is connected directly to a microprocessor, accepts 3-line serial peripheral interface (SPI),
display data can stores in an on-chip display data RAM of 4 x 96 bits. It performs display data RAM read/write operation
with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits to
drive liquid crystal, it is possible to make a display system with the fewest components.
2. FEATURES
supply voltage (external V0/XV0 voltage supply is
Single-chip LCD controller & driver
Driver Output Circuits
also supported).
4 common outputs / 96 segment. Output
Built-in high-accuracy Regulator.
96 segment drivers : up to forty-eight 8-segment
Built-in voltage follower generates LCD bias voltages
numeric characters; up to twenty-five 15-segment
Built-in Oscillator requires no external components
(external clock is also supported)
alphanumeric characters; or any graphics of up to
External RESB (reset) pin
384 elements
On-chip Display Data Ram
Logic supply voltage range
VDD1-VSS: 1.65V~3.4V
Microprocessor Interface
VDD2-VSS: 2.5V~3.4V
Parallel MPU interface: 8-bit parallel 6800-series or
Display supply voltage 4.0V
8080-series
Temperature range: -30 to +80 degree
Serial MPU interface: 4-line and 3-line SPI (serial
Capacity: 4X96=384bits
peripheral interfaces) are available.
On-chip Low Power Analog Circuit
Built-in Booster (x4 or x5) circuit generates LCD
Ver 1.1
1/39
2009/07/17
ST7033
3. ST7033 PAD ARRANGEMENT (COG)
Dice Size:
5080um X 770um
Bump Height:
15um
Chip Thickness:
300um
Bump Pitch:
PAD Number
Pitch (um)
1~23, 120~142, 143~153, 227~238:
24~119:
PAD Number
Pitch (um)
37.2
153-154:
86.97
33
199-200
46.66
154~199, 213~226:
59.3
205-206, 206-207
38.8
200~205, 207~212:
33.3
212-213
53.44
23-24:
69.1
226-227
79.9
119-120:
60.70
55
58.5
92
112.5
NC
NC
NC
T12
T1
NC
NC
2/39
NC
SEG0
NC
SEG95
COM0
NC
Ver 1.1
2009/07/17
ST7033
4-1. PAD CENTER COORDINATES
NO.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Ver 1.1
NAME
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
SEG[0]
SEG[1]
SEG[2]
SEG[3]
SEG[4]
SEG[5]
SEG[6]
SEG[7]
SEG[8]
SEG[9]
SEG[10]
SEG[11]
SEG[12]
SEG[13]
SEG[14]
SEG[15]
SEG[16]
SEG[17]
SEG[18]
SEG[19]
SEG[20]
SEG[21]
X
2450.80
2413.60
2376.40
2339.20
2302.00
2264.80
2227.60
2190.40
2153.20
2116.00
2078.80
2041.60
2004.40
1967.20
1930.00
1892.80
1855.60
1818.40
1781.20
1744.00
1706.80
1669.60
1632.40
1563.30
1530.30
1497.30
1464.30
1431.30
1398.30
1365.30
1332.30
1299.30
1266.30
1233.30
1200.30
1167.30
1134.30
1101.30
1068.30
1035.30
1002.30
969.30
936.30
903.30
870.30
Y
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
NO.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
3/39
NAME
SEG[22]
SEG[23]
SEG[24]
SEG[25]
SEG[26]
SEG[27]
SEG[28]
SEG[29]
SEG[30]
SEG[31]
SEG[32]
SEG[33]
SEG[34]
SEG[35]
SEG[36]
SEG[37]
SEG[38]
SEG[39]
SEG[40]
SEG[41]
SEG[42]
SEG[43]
SEG[44]
SEG[45]
SEG[46]
SEG[47]
SEG[48]
SEG[49]
SEG[50]
SEG[51]
SEG[52]
SEG[53]
SEG[54]
SEG[55]
SEG[56]
SEG[57]
SEG[58]
SEG[59]
SEG[60]
SEG[61]
SEG[62]
SEG[63]
SEG[64]
SEG[65]
SEG[66]
X
837.30
804.30
771.30
738.30
705.30
672.30
639.30
606.30
573.30
540.30
507.30
474.30
441.30
408.30
375.30
342.30
309.30
276.30
243.30
210.30
177.30
144.30
111.30
78.30
45.30
12.30
-20.71
-53.71
-86.71
-119.71
-152.71
-185.71
-218.71
-251.71
-284.71
-317.71
-350.71
-383.71
-416.71
-449.71
-482.71
-515.71
-548.71
-581.71
-614.71
Y
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
2009/07/17
ST7033
NO.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Ver 1.1
NAME
SEG[67]
SEG[68]
SEG[69]
SEG[70]
SEG[71]
SEG[72]
SEG[73]
SEG[74]
SEG[75]
SEG[76]
SEG[77]
SEG[78]
SEG[79]
SEG[80]
SEG[81]
SEG[82]
SEG[83]
SEG[84]
SEG[85]
SEG[86]
SEG[87]
SEG[88]
SEG[89]
SEG[90]
SEG[91]
SEG[92]
SEG[93]
SEG[94]
SEG[95]
NC
COM[0]
COM[1]
COM[2]
COM[3]
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
X
-647.71
-680.71
-713.71
-746.71
-779.71
-812.71
-845.71
-878.71
-911.71
-944.71
-977.71
-1010.71
-1043.71
-1076.71
-1109.71
-1142.71
-1175.71
-1208.71
-1241.71
-1274.71
-1307.71
-1340.71
-1373.71
-1406.71
-1439.71
-1472.71
-1505.71
-1538.71
-1571.71
-1632.40
-1669.60
-1706.80
-1744.00
-1781.20
-1818.40
-1855.60
-1892.80
-1930.00
-1967.20
-2004.40
-2041.60
-2078.80
-2116.00
-2153.20
-2190.40
-2227.60
-2264.80
-2302.00
Y
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
282.75
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
293.00
NO.
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
4/39
NAME
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
VM
VM
VM
VGO
VGO
VGI
VGI
VGI
VGI
VGS
/RESB
/CSB
PS0
PS1
TMX
TMY
BR
MODE
CP
VSS
VSS
VSS
VSS
VSS
RW_WR
E_RD
DA
A0
D[7]
D[6]
D[5]
D[4]
D[3]
X
-2339.20
-2376.40
-2413.60
-2450.80
-2450.80
-2413.60
-2376.40
-2339.20
-2302.00
-2264.80
-2227.60
-2190.40
-2153.20
-2116.00
-2078.80
-1991.84
-1932.53
-1873.23
-1813.92
-1754.62
-1695.31
-1636.01
-1576.70
-1517.40
-1458.09
-1398.79
-1339.49
-1280.18
-1220.88
-1161.57
-1102.27
-1042.96
-983.66
-924.35
-865.05
-805.74
-746.43
-687.13
-627.83
-568.52
-509.22
-449.91
-390.61
-331.30
-272.00
-212.69
-153.39
-94.08
Y
293.00
293.00
293.00
293.00
-293.00
-293.00
-293.00
-293.00
-293.00
-293.00
-293.00
-293.00
-293.00
-293.00
-293.00
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
2009/07/17
ST7033
NO.
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
Ver 1.1
NAME
D[2]
D[1]
D[0]
OSC
VDD1
VDD1
VDD1
VDD1
VDD2
VDD2
VDD2
VDD2
VRS
T[1]
T[2]
T[3]
T[4]
T[5]
T[6]
T[0]
T[7]
T[8]
T[9]
T[10]
T[11]
T[12]
V0O
V0O
V0I
V0I
V0I
V0I
V0S
XV0O
XV0O
XV0I
XV0I
XV0I
XV0I
XV0S
NC
NC
NC
NC
NC
NC
NC
X
-34.78
24.54
83.84
143.15
202.45
261.75
321.06
380.37
439.67
498.97
558.28
617.59
676.89
723.54
756.84
790.14
823.44
856.74
890.04
928.84
967.64
1000.94
1034.24
1067.54
1100.84
1134.14
1187.58
1246.89
1306.20
1365.50
1424.80
1484.11
1543.42
1605.87
1665.17
1724.48
1783.79
1843.09
1902.39
1961.70
2041.60
2078.80
2116.00
2153.20
2190.40
2227.60
2264.80
Y
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-307.75
-307.75
-307.75
-307.75
-307.75
-307.75
-307.75
-307.75
-307.75
-307.75
-307.75
-307.75
-307.75
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-311.50
-293.00
-293.00
-293.00
-293.00
-293.00
-293.00
-293.00
NO.
234
235
236
237
238
5/39
NAME
NC
NC
NC
NC
NC
X
2302.00
2339.20
2376.40
2413.60
2450.80
Y
-293.00
-293.00
-293.00
-293.00
-293.00
2009/07/17
ST7033
5. BLOCK DIAGRAM
SEG0...SEG95
COM0...COM3
SEGMENT
Drivers
COMMON
Drivers
VM
VG
VM
VGI
VGO
VGS
Voltage
Follower
Display Data Latchs
XV0I
XV0O
XV0S
XV0
Generator
V0I
V0O
V0S
V0
Generator
VDD2
Power
System
XV0
V0
Display Data RAM
(DDRAM)
4X96
Data
Register
VDD1
VSS
Address
Counter
COMMON
Output
Controller
Timing
Generator
Oscillator
OSC
Control
Registers
Command
Decoder
MPU INTERFACE (Parallel / Serial)
/RESB
D7
D6
D5
D4
D3
D2
D1
D0
E_RD
RW_WR
A0
/CSB
TMY
TMX
BR
CP
MODE
DA
PS1
PS0
Reset
Circuit
Figure 1. Block Diagram
Ver 1.1
6/39
2009/07/17
ST7033
6. PINNING DESCRIPTIONS
Pin Name
LCD driver outputs
I/O
Description
Pin Count
LCD segment driver outputs.
The display data and the M signal control the output voltage of segment
driver.
Display data
SEG0 to SEG95
Segment drover output voltage
Frame
O
-
H
H
+
L
L
+
Power save mode
Normal display
Reverse display
VG
VSS
VSS
VG
VSS
VSS
VG
VG
VSS
VSS
96
LCD column driver outputs.
The internal scanning data and the M signal control the output voltage of
common driver.
Display data
COM0 to COM3
Common drover output voltage
Frame
Normal display
O
H
H
+
L
L
+
Power save mode
Reverse display
68
XV0
V0
VM
VM
VSS
MICROPROCESSOR INTERFACE
Microprocessor interface mode selection pins.
PS[1,0]
I
PS1
PS0
Interface Mode
1
1
8080-series parallel MPU interface
1
0
6800-series parallel MPU interface
0
1
4-line SPI MPU interface
0
0
3-line SPI MPU interface
2
Chip select input pin.
/CSB
I
Data/instruction I/O is enabled only when /CSB is "L". When chip select is
1
non-active, D7…D0 are high impedance.
/RESB
A0
I
I
Reset input pin.
When /RESB is "L", initialization is executed.
It determines whether the data bits are data or a command.
A0=" H “: Indicates that D0 to D7 are display data.
A0=" L “: Indicates that D0 to D7 are control data.
There is no A0 pin in three line , so this pin can fix to ” H”
1
1
Read/Write operation control pin (if using Parallel interface).
MPU Type
RW_WR
I
6800-series
RW_WR
R/W
Interface Mode
R/W=”H”: Read;
R/W=”L”: Write.
1
Signals (Instruction or Data) on
8080-series
/WR
data bus will be latched at the
raising edge of this signal.
Ver 1.1
7/39
2009/07/17
ST7033
Read/Write operation control pin (if using Parallel interface).
MPU Type
E_RD
Interface Mode
Signals (Instruction or Data) on
E_RD
I
6800-series
E
data bus will be latched by MPU
or this IC (depends on R/W) at
1
the falling edge of this signal.
Internal status (or display data)
8080-series
/RD
will be read out to data bus after
the falling edge of this signal.
Data Bus. If /CSB signal is not actived, D7…D0 are high impedance.
Parallel interface (6800 or 8080):
Serial SPI interface (3 line or 4 line):
I/O port which is connected to the standard 8-bit MPU data bus.
D0…D7
I
8
SCLK: D0;
SDA: D1~D3;
D4~D7 must connect to VDD1.
LCD DRIVER SUPPLY
OSC
OSC=”H”: Use the built-in oscillator.
OSC=”L”: Both external clock and built-in oscillator are inhibited. And
the display circuits will not be clocked and kept in a DC state. To
I
avoid this, the chip should always be put into Power-Down Mode
1
before stopping the clock.
If using external clock, connect this pin to the external clock.
POWER SUPPLY
VSS
Power
VDD1
Power
Ground.
5
Digital circuits supply voltage.
The 2 power supply rails, VDD1 and VDD2, could be connected together.
4
Use this power to be the high voltage level for the Option pins.
VDD2
Power
Analog circuits supply voltage.
The 2 power supply rails, VDD and VDD2, could be connected together.
4
Negative LCD driver supply voltages.
XV0I, XV0O, XV0S
Power
Supply
V0I, V0O, V0S;
Power
VGI, VGO, VGS
Supply
XV0I, XV0O & XV0S should be separated in ITO layout.
7
XV0I, XV0O & XV0S should be connected together in FPC layout.
This is a multi-level power supply for the liquid crystal.
V0 ≥ VG ≥ VM ≥ VSS ≥ XV0
V0I, V0O & V0S should be separated in ITO layout.
V0I, V0O & V0S should be connected together in FPC layout.
VGI, VGO & VGS should be separated in ITO layout.
6
VGI, VGO & VGS should be connected together in FPC layout.
VM
VRS
Power
Supply
Power
LCD driving voltage for commons.
Reserved to monitor internal Voltage Regulator reference level, must be left
open.
3
1
Configuration Pins
MODE
I
CP
I
Test pin.
1
Must fix to “L”
Set Booster stage.
1
VSS=4X;
VDD=5X.
Ver 1.1
8/39
2009/07/17
ST7033
BR
I
Test pin.
1
Must fix to “L”
Test Pin
T0~T12
---
Test pins. Do not use these pins.
13
Mirror X: SEG bi-direction selection (refer to pad center coordinates).
TMX
I
TMX connect to VSS :MX mode1(refer to segment driver direction select)
1
TMX connect to VDD1 :MX mode2(refer to segment driver direction select)
Mirror Y: COM bi-direction selection (refer to pad center coordinates).
TMY
I
TMY connect to VSS: MY mode1(refer to common driver direction select)
1
TMY connect to VDD1: MY mode2(refer to common driver direction select)
DA
I
Test pin.
1
Must fix to “L”
Recommended I/O PIN ITO Resistance Limitation
PIN Name
ITO Resister
PS[1:0],OSC,CP,BR
<5KΩ
T0~T12,VRS
Floating
VDD1, VDD2, VSS
<100Ω
V0, VG , VM , XV0
<500Ω
A0,/WR,/RD,/CSB, D0 …D7
<1KΩ
/RESB
RESB<10KΩ
Ver 1.1
9/39
2009/07/17
ST7033
7. FUNCTIONS DESCRIPTION
MICROPROCESSOR INTERFACE
Chip Select Input
There is /CSB pin for chip selection. The ST7033 can interface with an MPU when /CSB is "L". When /CSB is “H”, the
internal shift register and the counter are reset.
Parallel / Serial Interface
ST7033 has five types of interface with an MPU, which are three serial and two parallel interfaces. This parallel or serial
interface is determined by PS [1:0] pin as shown in Table 1.
PS1
H
H
L
L
PS0
H
L
H
L
/CSB
A0
State
/CSB
A0
8080-series parallel MPU interface
/CSB
A0
6800-series parallel MPU interface
/CSB
A0
4 Pin-SPI MPU interface
/CSB
"*"
3 Pin-SPI MPU interface
Table 1. Parallel/Serial Interface Mode
Parallel Interface
The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS1~PS0 as shown in
Table 2. The type of data transfer is determined by signals at A0, /RD (E) and /WR(R/W) as shown in Table 3.
PS1
H
H
Common
A0
H
H
L
L
PS0
H
L
6800-series
E
R/W
H
H
H
L
H
H
H
L
/CSB
A0
/RD (E) /WR (R/W) DB0 to DB7
MPU bus
/CSB
A0
/RD
/WR
DB0 to DB7
8080-series
/CSB
A0
E
R/W
DB0 to DB7
6800-series
Table 2. Microprocessor Selection for Parallel Interface
8080-series
Description
/RD
/WR
L
H
Display data read out
H
L
Display data write
L
H
Register status read
H
L
Writes to internal register (instruction)
Table 3. Parallel Data Transfer
NOTE: By fixing /RD (E) pin at high (VDD1) in 6800-series interface mode, /CSB can be used as enable signal. In this case,
interface data is latched at the rising edge of /CSB and the access type is determined by signals on A0, /WR(R/W) just
same as 6800-series mode.
Ver 1.1
10/39
2009/07/17
ST7033
Serial Interface
Serial Mode
4-line SPI interface
PS1
L
PS0
H
/CSB
/CSB
3-line SPI interface
L
L
/CSB
A0
Used
Not Used
Fix to “H”
Table 4. Microprocessor Selection for Serial Interface
PS1= “L”, PS0= “H”: 4-line SPI interface
When the ST7033 is active (/CSB=”L”), serial data (D1) and serial clock (D0) inputs are enabled. When /CSB is “High”, the
internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication is controlled by the register
selection pin (A0). The signals transferred on data bus will be display data when A0 is high and will be instruction when A0
is low. The read feature is not supported in this mode. Serial data on SDA (D1) is latched at the rising edge of serial clock
on SCLK (D0). After the eighth serial clock, the serial data will be processed as 8-bit parallel data. The DDRAM column
address pointer will be increased by one automatically after each byte of DDRAM access.
Figure 2. 4-Line SPI Timing
3-line SPI interface
When ST7033 is active (/CSB=”L”), SDA-out, SDA-in and SCL inputs are enabled. When ST7033 is not active (/CSB=”H”),
the internal 8-bit shift register and the 3-bit counter are reset. The A0 pin is not available in this mode. Before issuing serial
data, an A0 bit is required to indicate the access is data or instruction. The read feature is not supported in this mode except
ID code read feature. Serial data on SDA (D1) is latched at the rising edge of serial clock on SCLK (D0). After the eighth
serial clock, the serial data will be processed as 8-bit parallel data. The DDRAM column address pointer will be increased
by one automatically after each byte of DDRAM access.
Figure 3. 3-Line SPI Timing
Ver 1.1
11/39
2009/07/17
ST7033
DISPLAY DATA RAM (DDRAM)
The ST7033 contains a 4x96 bit static RAM that stores the display data. The display data RAM store the dot data for the
LCD.It is 4-row by 96-column addressable array. Each pixel can be selected when the column addresses are
specified.Data are written to ram directly through D0 to D3 and D4 to D7 are disabled bits. The display data from the
microprocessor correspond to the LCD common lines. The microprocessor can write to RAM through the I/O buffer. Since
the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed
without causing the LCD flicker.
Line Address Circuit
This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line
Address repeatedly.At the beginning of each LCD frame, the contents of register are copied to the line counter which is
increased by CL signal and generates the line address for transferring the 96-bit RAM data to the display data latch circuit.
Column Address Circuit
Column Address Circuit has an 8-bit preset counter that provides Column Address to the Display Data RAM. The display
data RAM column address is specified by the Column Address Set command. The specified column address is
incremented (+1) with each display data write command. This allows the MPU display data to be accessed continuously.
ADDRESSING
Data is downloaded in bytes into the RAM matrix of ST7033 as indicated in Figure 4. The display RAM has a matrix of 4 by
96 bits. The address pointer addresses the columns. The column address ranges are: 0 to 95 (1011111), .Addresses
outside these ranges are not allowed. After the last column address (95) wraps around to 0 .
Ver 1.1
12/39
2009/07/17
ST7033
Data Structure
Line
Address
D0
D1
D2
D3
D4
D5
D6
D7
Data
……
D4~D7 are disabled bits
SEG95
SEG94
SEG93
SEG92
SEG91
SEG5
SEG6
SEG0
SEG1
SEG2
SEG3
SEG4
SEG87
SEG88
SEG89
SEG90
SEG91
SEG92
SEG93
SEG94
SEG95
……
SEG90
SEG89
Reverse
direction
MX=1
SEG7
SEG8
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
……
SEG88
SEG87
Normal
direction
MX=0
5FH
5EH
5DH
5CH
5BH
5AH
59H
58H
57H
08H
07H
06H
05H
04H
03H
02H
01H
00H
……
Column Address
00H
01H
02H
03H
COM output
Start
COM0
COM1
COM2
COM3
COM3
COM2
COM1
COM0
Normal
Reverse
direction direction
MY=0
MY=1
Start
SEG
output
Figure 4. Display Data RAM Map (1/4 Duty)
Ver 1.1
13/39
2009/07/17
ST7033
LCD layout reference
Layout method
LCD SEG
a
SEGn+2
SEGn+3
SEGn+5
Display RAM filling order
SEGn
SEGn+1
g
c
SEGn+7
d
DP
a
SEGn
SEGn+1
g
SEGn+2
e
c
COM1
d
SEGn+3
DP
a
SEGn+1
SEGn+2
e
c
COM1
COM2
d
DP
a
COM0
e
d
DP
COM1
x
x
x
x
x
x
x
x
COM2
x
x
x
x
x
x
x
x
COM3
x
x
x
x
x
x
x
x
SEGn
SEGn+1
COM0
a
f
e
d
COM1
b
g
c
DP
COM2
x
x
x
x
COM3
x
x
x
x
SEGn+1 SEGn+2
e
COM1
c
COM3
d
DP
SEGn+2
b
a
COM1
DP
d
e
COM2
c
g
x
COM3
x
x
x
SEGn
SEGn+1
a
SEGn+3
SEGn+1 SEGn+2
COM0
COM0
g
SEGn+1
g
COM2
b
f
Method 4
SEGn+7
f
SEGn
SEGn
g
SEGn
SEGn+6
a
COM0
b
f
Method 3
SEGn+5
b
COM0
b
f
Method 2
SEGn+4
c
SEGn
e
SEGn+6
SEGn+3
COM0
COM0
b
f
SEGn+4
Method 1
LCD COM
f
f
COM1
c
e
COM2
b
g
COM3
DP
d
Figure 5. Relationships between LCD layout and display RAM filling order and display data
Notes 1:’ x ‘=
data bit unchanged.
Notes 2:ST7033 is always operating in 1/4 duty.
Ver 1.1
14/39
2009/07/17
ST7033
LCD DRIVER CIRCUIT
4-channel common drivers and 96-channel segment drivers configure this driver circuit. This LCD panel driver voltage
depends on the combination of display data and frame (positive or negative).
Figure 6. LCD Driver Waveforms
Liquid Crystal Driver Power Circuit
The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power
consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage
follower circuits. They are controlled by power control instruction.
Figure 7. External Components on V0, XV0 and VG
Ver 1.1
15/39
2009/07/17
ST7033
8. RESET CIRCUIT
Setting /RESB to “L” or Reset instruction can initialize internal function.
When /RESB becomes “L”, following procedure is occurred.
Power save mode is entered
--Oscillator circuit is stopped
--The LCD power supply circuit is stopped
--Display OFF
--Display all point ON
--Segment/Common output go to the VSS level
Display normal
Column address: 0
Common scan direction : MY=0
Segment scan direction : MX=0
Power control [VB VR VF]=0
Booster: CP pad
Ver 1.1
16/39
2009/07/17
ST7033
9-1. INSTRUCTION TABLE
Display data write
A0
1
D7
D7
D6
D6
D5
D5
CODE
D4
D4
D3
D3
D2
D2
D1
D1
Display ON/OFF
0
1
0
1
0
1
1
1
0
1
0
1
0
0
1
1
0
1
0
1
0
0
1
0
0
1
0
1
1
0
0
0
0
0
0
0
0
1
*
X6
X5
X4
0
0
0
0
0
X3
X2
X1
X0
COMMAND
Display
normal/reverse
Display all points
ON/OFF
Page address set
Column address set
Upper 3-bit address
Column address set
Lower 4-bit address
Segment driver
direction select
0
1
0
1
0
0
0
0
Common driver
direction select
0
1
1
0
0
MY
*
*
Power control set
0
0
0
1
0
1
VB
VR
Power save mode
-
-
-
-
-
-
-
-
Reset
0
NOP
0
Enter mode set
0
Duty mode set
0
Finish mode set
0
Notes: “*” = Disabled bit
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
0
0
1
0
1
0
0
0
1
0
0
0
0
1
0
1
1
0
0
0
Ver 1.1
17/39
D0
D0
0
1
0
1
0
1
DESCRIPTION
Write data to RAM
LCD display
0:OFF,1:ON
LCD display
0:normal;1:reverse
LCD display
0:normal;1:all points ON
Set the DDRAM page
address
Set the DDRAM column
address
Sets the correspondence
between the DDRAM column
MX
address and the SEG driver
output
Sets the correspondence
between the DDRAM line
*
address and the COM driver
output
Set the on-chip power supply
VF
circuit operation mode
Compound command of
Display OFF and
Display-all-points-ON
0 Software reset
1 No operation
1 Enter mode set
0 Set 1/4 duty
0 Finish mode set
2009/07/17
ST7033
9-2. INSTRUCTION DESCRIPTION
Display data Write
8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address .
The column address is increased by 1 automatically so that the microprocessor can continuously write data . During
auto-increment, the column address wraps to 0 after the last column is written.
A0
1
D7
D6
D5
D4
D3
Write data
D2
D1
D0
Description
Write to the DDRAM
D0
0
1
Description
Display OFF
Display ON
Display ON/OFF
This command turns the display ON and OFF.
A0
D7
D6
D5
D4
D3
D2
D1
0
1
0
1
0
1
1
1
Display Normal/Reverse
This command can reserve the lit and unlit without overwriting the content of the DDRAM.
A0
D7
D6
D5
D4
D3
D2
D1
0
1
0
1
0
0
1
1
D0
0
1
Description
LCD ON Voltage
LCD OFF Voltage
Display All Points ON/OFF
The command makes it possible to force all display points ON regardless of the content of the DDRAM. Even when this is
done, the DDRAM contents are maintained. This command takes priority over the Display normal/reverse command.
A0
D7
D6
D5
D4
D3
D2
D1
D0
Description
0
Normal Display Mode
0
1
0
1
0
0
1
0
1
Display All Points ON
When the Display all points ON command is executed when in the Display OFF mode, Power Save mode is entered. See
the “Power Save mode” for detail.
Page Address Set
This command specifies the start page address of the DDRAM.
A0
D7
D6
D5
D4
D3
D2
D1
D0
Description
0
1
0
1
1
0
0
0
0
Ser page address
Column Address Set
This command specifies the column address of the DDRAM. The column address is split into two sections (the upper 3-bits
and lower 4-bits) when it is set.
Each time the DDRAM is accessed, the column address automatically increments by +1, imaging it possible for the MCU to
continuously access to the display data. After the last column address (5FH), column address returns to 00H.
A0
D7
D6
D5
D4
D3
D2
D1
D0
Description
0
0
0
0
1
0
*
X3
X6
X2
X5
X1
X4
X0
Upper bit address
Lower bit address
Notes:’ * ‘Disabled bit
Ver 1.1
18/39
2009/07/17
ST7033
X6
0
0
0
0
:
1
1
X5
0
0
0
0
:
0
0
X4
0
0
0
0
:
1
1
X3
0
0
0
0
:
1
1
X2
0
0
0
0
:
1
1
X1
0
0
1
1
:
1
1
X0
0
1
0
1
:
0
1
Column Address
0
1
2
3
:
94
95
Segment Driver Direction Select
This command can reverse the correspondence between the DDRAM column address and the segment driver output
A0
D7
D6
D5
D4
D3
D2
D1
D0
Description
MX=0 SEG95→ SEG0
TMX=VSS
MX=1 SEG0→ SEG95
MX mode 1
0
1
0
1
0
0
0
0
MX
MX=0 SEG0 → SEG95
TMX=VDD1
MX=1 SEG95 → SEG0
MX mode 2
Common Driver Direction Select
This command can reverse the correspondence between the DDRAM line address and the common driver output
A0
D7
D6
D5
D4
D3
D2
D1
D0
Description
TMY=VSS
MY=0 COM0→ COM67
MY mode 1
MY=1 COM67→ COM0
0
1
1
0
0
MY
*
*
*
TMY=VDD1
MY=0 COM67→ COM0
MY mode 2
MY=1 COM0→ COM67
Notes1:’ * ‘Disabled bit
Power control set
This command sets the on-chip power supply function ON/OFF.
A0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1
0
1
Description
Booster: OFF
0
0
0
Voltage Regulator: OFF
Voltage Follower: OFF
Booster: ON
1
1
1
Voltage Regulator: ON
Voltage Follower: ON
(D2 : Booster, D1 : Voltage Regulator, D0 : Voltage Follower)
Set 1/4 duty mode (Combinative instructions)
These combinative instructions set the driver into 1/4 duty mode.
Enter mode set
A0
0
D7
1
D6
1
D5
1
D4
1
D3
0
D2
0
D1
0
D0
1
Description
Enter mode set
D6
0
D5
1
D4
0
D3
1
D2
1
D1
0
D0
0
Description
Set 1/4 duty
D6
1
D5
1
D4
1
D3
0
D2
0
D1
0
D0
0
Description
Finish mode set
Duty mode set
A0
0
D7
1
Finish mode set
A0
0
Ver 1.1
D7
1
19/39
2009/07/17
ST7033
Power Save Mode
If the display all points ON command is executed when the display is in display OFF mode, power saver mode is entered.
This mode stops every operation of the LCD display system.
Power save (Display OFF & Display all points ON)
Command
Power save mode
Effect
Power save OFF (Display all points OFF)
Power save mode canceled
Figure 8. Power Save Mode
The internal states in power save mode are as follows:
-The oscillator circuit is stopped
-The LCD driver circuit is stopped
-The LCD driver circuit is stopped and segment/common driver output s to VSS level
-The display data and operation mode before execution of the Power save are held, and the MCU can access to the
DDRAM and internal registers.
Reset
When this command is issued, the driver is initialized. This command doesn’t change DDRAM content.
A0
0
D7
1
D6
1
D5
1
D4
0
D3
0
D2
0
D1
1
D0
0
Description
Software reset
D5
1
D4
0
D3
0
D2
0
D1
1
D0
1
Description
No operation
NOP
Non-operation command
A0
0
Ver 1.1
D7
1
D6
1
20/39
2009/07/17
ST7033
Command Description
Referential instruction setup flow for power on:
Referential instruction setup flow for power down:
Figure 9. Power On and Power Down Sequence
Ver 1.1
21/39
2009/07/17
ST7033
10. LIMITING VALUES
In accordance with the Absolute Maximum Rating System; see notes 1 and 2.
Parameter
Symbol
Conditions
Unit
Power supply voltage
VDD1
-0.3 ~ 3.6
V
Power supply voltage
VDD2
-0.3 ~ 3.6
V
Power supply voltage (VDD2 standard)
V0, |XV0|
-0.3 ~ 13.5
V
Power supply voltage (VDD2 standard)
VG, VM
0.3 to V0
V
Operating temperature
TOPR
–30 to +80
°C
Storage temperature
TSTR
–65 to +150
°C
Figure 10.
Notes
1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to
VSS unless otherwise noted.
3. Insure that the voltage levels of VG, VM, VSS, and XV0 are always such that
V0 ≧ VG ≧ VM ≧ VSS ≧ XV0
Ver 1.1
22/39
2009/07/17
ST7033
11. HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling MOS devices
12. DC CHARACTERISTICS
℃ to +80℃
℃; unless otherwise specified.
VSS = 0 V; Ta = -30℃
Item
Symbol
Condition
Rating
Min.
Typ.
Max.
Units
Applicable
Pin
Operating Voltage (1)
VDD1
1.65
—
3.4
V
VSS
Operating Voltage (2)
VDD2 (Relative to VSS)
2.5
—
3.4
V
VSS
High-level Input Voltage
VIHC
0.7 x VDD1
—
VDD1
V
Low-level Input Voltage
VILC
VSS
—
0.8 x VDD1
—
VSS
—
High-level Output Voltage
VOHC IOH=1mA
Low-level Output Voltage
VOLC IOL1mA
0.3 x VDD1 V
VDD1
V
0.2 x VDD1 V
Input leakage current
ILI
–1.0
—
1.0
μA
Output leakage current
ILO
–3.0
—
3.0
μA
—
0.8
—
Liquid
Crystal
Driver
ON
Resistance
Internal Power
Frame frequency
Ver 1.1
Supply Step-up output
voltage Circuit
Voltage regulator Circuit
Operating Voltage
RON
Ta= 25°C
△V=10%
V0 =9.0 V
KΩ
VG = 2.0 V
FR
—
0.9
—
—
70
—
SEGn
COMn
Hz
V0
(V0 To VSS)
—
4
—
V
V0
XV0
(VG To XV0)
—
-4
—
V
XV0
23/39
2009/07/17
ST7033
Dynamic Consumption Current :
During Display, with the Internal Power Supply ON Current consumed by total ICs(bare die)
Test pattern
Symbol
Condition
Power Down
ISS
Ta = 25°C
Rating
Min.
Typ.
Max.
—
1.0
10
Units
Notes
μA
Notes to the DC characteristics
1. The maximum possible V0 oltage that may be generated is dependent on voltage, temperature and (display) load.
2. During power down all static currents are switched off.
Ver 1.1
24/39
2009/07/17
ST7033
13. TIMING CHARACTERISTICS
System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)
A0
tAW8
tAH8
tAS8
/CSB
tCYC8
tCCLR,tCCLW
WR,RD
tCCHR,tCCHW
tDS8
tDH8
D0 to D7
(Write)
tACC8
tOH8
D0 to D7
(Read)
Figure 11. Parallel 8080 Series Interface Characteristics
(VDD1 = 3.3V , Ta =25°C)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tAH8
10
—
tAW8
80
—
Address setup time
tAS8
60
—
System cycle time
tCYC8
350
—
Enable L pulse width (WRITE)
tCCLW
70
—
tCCHW
50
—
tDS8
60
—
tDH8
50
—
Address hold time
Address setup time
A0
ns
/WR
Enable H pulse width (WRITE)
WRITE Data setup time
D0 to D7
WRITE Address hold time
Ver 1.1
25/39
2009/07/17
ST7033
(VDD1 = 2.8V , Ta =25°C )
Item
Signal
Symbol
Condition
Rating
Min.
Max.
tAH8
15
—
tAW8
120
—
Address setup time
tAS8
80
—
System cycle time
tCYC8
450
—
Enable L pulse width (WRITE)
tCCLW
120
—
tCCHW
100
—
tDS8
90
—
tDH8
60
—
Address hold time
Address setup time
A0
/WR
Enable H pulse width (WRITE)
WRITE Data setup time
D0 to D7
WRITE Address hold time
Units
ns
(VDD1 = 1.8V , Ta =25°C)
Item
Signal
Symbol
Condition
Rating
Min.
Max.
tAH8
30
—
tAW8
150
—
Address setup time
tAS8
100
—
System cycle time
tCYC8
550
—
Enable L pulse width (WRITE)
tCCLW
170
—
tCCHW
150
—
tDS8
120
—
tDH8
70
—
Address hold time
Address setup time
A0
/WR
Enable H pulse width (WRITE)
WRITE Data setup time
WRITE Address hold time
D0 to D7
Units
ns
Notes1:The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely
fast,(tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified.
Notes2: All timing is specified using 20% and 80% of VDD1 as the reference.
Notes3: tCCLW and tCCLR are specified as the overlap between /CSB being “L” and /WR and /RD being at the “L” level.
Ver 1.1
26/39
2009/07/17
ST7033
System Bus Read/Write Characteristics 1 (For the 6800 Series MPU)
A0
R/W
tAW6
tAH6
/CSB
tCYC6
tEWHR, tEWHW
E
tEWLR, tEWLW
tDS6
tDH6
D0 to D7
(Write)
tACC6
tOH6
D0 to D7
(Read)
Figure 12. Parallel 6800 Series Interface Characteristics
(VDD1 = 3.3V , Ta =25°C)
Item
Signal
Address hold time
Address setup time
A0
R/W
System cycle time
Enable L pulse width (WRITE)
E
Enable H pulse width (WRITE)
WRITE Data setup time
WRITE Address hold time
Ver 1.1
D0 to D7
Symbol
Condition
Rating
Min.
Max.
tAH6
10
—
tAW6
80
—
tCYC6
240
—
tEWLW
70
—
tEWHW
50
—
tDS6
60
—
tDH6
50
—
27/39
Units
ns
2009/07/17
ST7033
(VDD1 = 2.8V , Ta =25°C)
Item
Signal
Address hold time
Address setup time
A0
R/W
System cycle time
Enable L pulse width (WRITE)
E
Enable H pulse width (WRITE)
WRITE Data setup time
D0 to D7
WRITE Address hold time
Symbol
Condition
Rating
Min.
Max.
tAH6
15
—
tAW6
100
—
tCYC6
340
—
tEWLW
120
—
tEWHW
100
—
tDS6
120
—
tDH6
60
—
Units
ns
(VDD1 = 1.8V , Ta =25°C)
Item
Signal
Address hold time
Address setup time
A0
R/W
System cycle time
Enable L pulse width (WRITE)
E
Enable H pulse width (WRITE)
WRITE Data setup time
WRITE Address hold time
D0 to D7
Symbol
Condition
Rating
Min.
Max.
tAH6
30
—
tAW6
150
—
tCYC6
440
—
tEWLW
170
—
tEWHW
150
—
tDS6
180
—
tDH6
70
—
Units
ns
Notes1:The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely
fast,(tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified.
Notes2:All timing is specified using 20% and 80% of VDD1 as the reference.
Notes3:tEWLW and tEWLR are specified as the overlap between /CSB being “L” and E.
Ver 1.1
28/39
2009/07/17
ST7033
SERIAL INTERFACE (4-Line Interface)
tCSS
tCSH
/CSB
tSAS
tSAH
A0
tSCYC
tSLW
SCLK
tSHW
tf
tr
tSDS
tSDH
SDA
Figure 13. 4- Line Serial Interface Characteristics
(VDD1 = 3.3V , Ta =25°C )
Item
Signal
Serial Clock Period
SCL “H” pulse width
SCLK
Symbol
Condition
Rating
Min.
Max.
tSCYC
120
—
tSHW
60
—
SCL “L” pulse width
tSLW
60
—
Address setup time
tSAS
20
—
tSAH
90
—
Address hold time
Data setup time
A0
SDA
Data hold time
CS-SCL time
/CSB
CS-SCL time
tSDS
20
—
tSDH
10
—
tCSS
20
—
tCSH
120
—
Units
ns
(VDD1 = 2.8V , Ta =-25°C)
Item
Signal
Serial Clock Period
SCL “H” pulse width
SCLK
SCL “L” pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CS-SCL time
CS-SCL time
Ver 1.1
A0
SDA
/CSB
Symbol
Condition
Rating
Min.
Max.
tSCYC
200
—
tSHW
100
—
tSLW
100
—
tSAS
30
—
tSAH
120
—
tSDS
30
—
tSDH
20
—
tCSS
30
—
tCSH
150
—
29/39
Units
ns
2009/07/17
ST7033
(VDD1 = 1.8V , Ta =25°C)
Item
Signal
Serial Clock Period
SCL “H” pulse width
SCLK
SCL “L” pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CS-SCL time
CS-SCL time
A0
SDA
/CSB
Symbol
Condition
Rating
Min.
Max.
tSCYC
280
—
tSHW
140
—
tSLW
140
—
tSAS
50
—
tSAH
150
—
tSDS
50
—
tSDH
50
—
tCSS
40
—
tCSH
180
—
Units
ns
Notes1: The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
Notes2: All timing is specified using 20% and 80% of VDD1 as the standard.
Ver 1.1
30/39
2009/07/17
ST7033
SERIAL INTERFACE (3-Line Interface)
Figure 14. 3- Line Serial Interface Characteristics
(VDD1=3.3V ,Ta=25℃)
Item
Signal
Serial Clock Period(Write)
SCL “H” pulse width(Write)
SCLK
SCL “L” pulse width(Write)
Data setup time
Data hold time
CS-SCL time
CS-SCL time
SDAIN
/CSB
Symbol
Condition
Rating
Min.
Max.
tSCYC
120
—
tSHW
60
—
tSLW
60
—
tSDS
30
—
tSDH
30
—
tCSS
30
—
tCSH
30
—
SCL-CS
/CSB
tSCC
10
—
CS “H” pulse width
/CSB
tCHW
30
—
Ver 1.1
31/39
Units
ns
2009/07/17
ST7033
(VDD1=2.8V ,Ta=25℃)
Item
Signal
Serial Clock Period(Write)
SCL “H” pulse width(Write)
SCLK
SCL “L” pulse width(Write)
Data setup time
SDAIN
Data hold time
CS-SCL time
/CSB
CS-SCL time
Symbol
Condition
Rating
Min.
Max.
tSCYC
180
—
tSHW
90
—
tSLW
90
—
tSDS
40
—
tSDH
40
—
tCSS
40
—
tCSH
40
—
SCL-CS
/CSB
tSCC
15
—
CS “H” pulse width
/CSB
tCHW
35
—
Units
ns
(VDD1=1.8V ,Ta=25℃)
Item
Signal
Serial Clock Period(Write)
SCL “H” pulse width(Write)
SCLK
SCL “L” pulse width(Write)
Data setup time
Data hold time
CS-SCL time
CS-SCL time
SDAIN
/CSB
Symbol
Condition
Rating
Min.
Max.
tSCYC
250
—
tSHW
100
—
tSLW
100
—
tSDS
60
—
tSDH
60
—
tCSS
60
—
tCSH
65
—
SCL-CS
/CSB
tSCC
20
—
CS “H” pulse width
/CSB
tCHW
45
—
Units
ns
Notes1:The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
Notes2:All timing is specified using 30% and 70% of VDD1 as the standard.
Ver 1.1
32/39
2009/07/17
ST7033
14. RESET TIMING
/RESB
tRJ
tRW
tR
Internal
status
During reset
Reset complete
Figure 15. Reset Timing Characteristics
(VDD1 = 3.3V , Ta = 25°C )
Item
Reset time
Signal Symbol
Condition
/RESB tR
Rating
Min.
Typ.
Max.
20
—
—
Units
us
Reset “L” pulse width
/RESB tRW
2
—
—
us
Reset rejection (for noise spike)
/RESB tRJ
—
—
1
us
(VDD1 = 2.8V , Ta =25°C )
Item
Signal Symbol
Condition
Rating
Min.
Typ.
Max.
Units
Reset time
/RESB tR
20
—
—
us
Reset “L” pulse width
/RESB tRW
2
—
—
us
Reset rejection (for noise spike)
/RESB tRJ
—
—
1
us
(VDD1 =1.8V , Ta = 25°C )
Item
Signal Symbol
Condition
Rating
Min.
Typ.
Max.
Units
Reset time
/RESB tR
30
—
—
us
Reset “L” pulse width
/RESB tRW
3
—
—
us
Reset rejection (for noise spike)
/RESB tRJ
—
—
1
us
Ver 1.1
33/39
2009/07/17
ST7033
15. APPLICATION NOTE
.............................................
1
23
24
119
120
121
122
123
124
142
NC
NC
SEG0
SEG95
NC
COM0
COM1
COM2
COM3
NC
238
227
226
222-225
219
220-221
215-218
213-214
212
211
210
209
208
207
206
205
204
203
202
201
200
199
195-198
191-194
190
189
188
187
186
185
184
183
182
181
180
179
178
173-177
172
171
170
169
168
167
166
165
164
163
153
159-162
157-158
154-156
143
NC
NC
XV0S
XV0I
XV0O
V0S
V0I
V0O
T12
T11
T10
T9
T8
T7
T0
T6
T5
T4
T3
T2
T1
VRS
VDD2
VDD1
OSC
D0
D1
D2
D3
D4
D5
D6
D7
A0
DA
E
R/ W
Vss
CP
MODE
BR
TMY
TMX
PS1
PS0
/CSB
/RESB
VGS
VGI
VGO
VM
NC
NC
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
XV0
V0
VDD2
VDD1
D0
D1
D2
D3
D4
D5
D6
D7
A0
E
R/W
VSS
/CSB
/RESB
VG
2009/07/17
34/39
Ver 1.1
.........
................
..........................................
.............................................
.............................................
ST7033
IC PAD SIDE
C=1.0uF
C=1.0uF
Figure 16. 6800 Parallel Application
ST7033
.............................................
1
23
24
119
120
121
122
123
124
142
NC
NC
SEG0
SEG95
NC
COM0
COM1
COM2
COM3
NC
238
227
226
222-225
219
220-221
215-218
213-214
212
211
210
209
208
207
206
205
204
203
202
201
200
199
195-198
191-194
190
189
188
187
186
185
184
183
182
181
180
179
178
173-177
172
171
170
169
168
167
166
165
164
163
153
159-162
157-158
154-156
143
NC
NC
XV0S
XV0I
XV0O
V0S
V0I
V0O
T12
T11
T10
T9
T8
T7
T0
T6
T5
T4
T3
T2
T1
VRS
VDD2
VDD1
OSC
D0
D1
D2
D3
D4
D5
D6
D7
A0
DA
/RD
/WR
Vss
CP
MODE
BR
TMY
TMX
PS1
PS0
/CSB
/RESB
VGS
VGI
VGO
VM
NC
NC
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
XV0
V0
VDD2
VDD1
D0
D1
D2
D3
D4
D5
D6
D7
A0
/RD
/WR
VSS
/CSB
/RESB
VG
2009/07/17
35/39
Ver 1.1
.........
................
..........................................
.............................................
.............................................
ST7033
IC PAD SIDE
C=1.0uF
C=1.0uF
Figure 17. 8080 Parallel Applicaiton
ST7033
.............................................
.............................................
.............................................
..........................................
ST7033
................
.........
IC PAD SIDE
C=1.0uF
C=1.0uF
Figure 18. 3-Line Serial Application
Ver 1.1
36/39
2009/07/17
ST7033
.............................................
1
23
24
119
120
121
122
123
124
142
NC
NC
SEG0
SEG95
NC
COM0
COM1
COM2
COM3
NC
238
227
NC
NC
NC
NC
BR
TMY
TMX
PS1
PS0
/CSB
/RESB
VGS
VGI
VGO
VM
MODE
XV0S
226
XV0I
222-225
XV0O
220-221
219
V0S
215-218
V0I
213-214
V0O
212
T12
211
T11
210
T10
T9
209
T8
208
207
T7
206
T0
205
T6
204
T5
203
T4
202
T3
201
T2
200
T1
199
VRS
VDD2
195-198
191-194
VDD1
OSC
SCLK
SDA_IN
SDA_OUT
SDA_OUT
D4
D5
D6
D7
A0
DA
/RD
/WR
Vss
CP
190
189
188
187
186
185
184
183
182
181
180
179
178
173-177
172
171
170
169
168
167
166
165
164
163
153
159-162
157-158
154-156
143
11
10
9
8
7
6
5
4
3
2
1
XV0
V0
VDD2
VDD1
SCLK
SDA
A0
VSS
/CSB
/RESB
VG
2009/07/17
37/39
Ver 1.1
.........
................
..........................................
.............................................
.............................................
ST7033
IC PAD SIDE
C=1.0uF
C=1.0uF
Figure 19. 4-Line Serial Application
ST7033
ITO Layout Reference
About ITO layout, please refer the following pictures:
XV0O
VGO
VGI
VGS
VDD1
VDD2
FPC
PIN
Ver 1.1
XV0I
XV0S
V0O
V0I
V0S
FPC
PIN
FPC
PIN
FPC
PIN
38/39
2009/07/17
ST7033
ST7033 Serial Specification Revision History
Version
Ver 1.1
Date
Description
1.0
2008/04/18 First Issue Version
1.1
2009/07/15 Modify application note
39/39
2009/07/17