ST Sitronix ST7033 4 x 96 Dot Matrix LCD Controller/Driver 1. INTRODUCTION The ST7033 is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 96 segment and 4 common driver circuits. This chip is connected directly to a microprocessor, accepts 3-line serial peripheral interface (SPI), display data can stores in an on-chip display data RAM of 4 x 96 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES supply voltage (external V0/XV0 voltage supply is Single-chip LCD controller & driver Driver Output Circuits also supported). 4 common outputs / 96 segment. Output Built-in high-accuracy Regulator. 96 segment drivers : up to forty-eight 8-segment Built-in voltage follower generates LCD bias voltages numeric characters; up to twenty-five 15-segment Built-in Oscillator requires no external components (external clock is also supported) alphanumeric characters; or any graphics of up to External RESB (reset) pin 384 elements On-chip Display Data Ram Logic supply voltage range VDD1-VSS: 1.65V~3.4V Microprocessor Interface VDD2-VSS: 2.5V~3.4V Parallel MPU interface: 8-bit parallel 6800-series or Display supply voltage 4.0V 8080-series Temperature range: -30 to +80 degree Serial MPU interface: 4-line and 3-line SPI (serial Capacity: 4X96=384bits peripheral interfaces) are available. On-chip Low Power Analog Circuit Built-in Booster (x4 or x5) circuit generates LCD Ver 1.1 1/39 2009/07/17 ST7033 3. ST7033 PAD ARRANGEMENT (COG) Dice Size: 5080um X 770um Bump Height: 15um Chip Thickness: 300um Bump Pitch: PAD Number Pitch (um) 1~23, 120~142, 143~153, 227~238: 24~119: PAD Number Pitch (um) 37.2 153-154: 86.97 33 199-200 46.66 154~199, 213~226: 59.3 205-206, 206-207 38.8 200~205, 207~212: 33.3 212-213 53.44 23-24: 69.1 226-227 79.9 119-120: 60.70 55 58.5 92 112.5 NC NC NC T12 T1 NC NC 2/39 NC SEG0 NC SEG95 COM0 NC Ver 1.1 2009/07/17 ST7033 4-1. PAD CENTER COORDINATES NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Ver 1.1 NAME NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC SEG[0] SEG[1] SEG[2] SEG[3] SEG[4] SEG[5] SEG[6] SEG[7] SEG[8] SEG[9] SEG[10] SEG[11] SEG[12] SEG[13] SEG[14] SEG[15] SEG[16] SEG[17] SEG[18] SEG[19] SEG[20] SEG[21] X 2450.80 2413.60 2376.40 2339.20 2302.00 2264.80 2227.60 2190.40 2153.20 2116.00 2078.80 2041.60 2004.40 1967.20 1930.00 1892.80 1855.60 1818.40 1781.20 1744.00 1706.80 1669.60 1632.40 1563.30 1530.30 1497.30 1464.30 1431.30 1398.30 1365.30 1332.30 1299.30 1266.30 1233.30 1200.30 1167.30 1134.30 1101.30 1068.30 1035.30 1002.30 969.30 936.30 903.30 870.30 Y 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 NO. 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 3/39 NAME SEG[22] SEG[23] SEG[24] SEG[25] SEG[26] SEG[27] SEG[28] SEG[29] SEG[30] SEG[31] SEG[32] SEG[33] SEG[34] SEG[35] SEG[36] SEG[37] SEG[38] SEG[39] SEG[40] SEG[41] SEG[42] SEG[43] SEG[44] SEG[45] SEG[46] SEG[47] SEG[48] SEG[49] SEG[50] SEG[51] SEG[52] SEG[53] SEG[54] SEG[55] SEG[56] SEG[57] SEG[58] SEG[59] SEG[60] SEG[61] SEG[62] SEG[63] SEG[64] SEG[65] SEG[66] X 837.30 804.30 771.30 738.30 705.30 672.30 639.30 606.30 573.30 540.30 507.30 474.30 441.30 408.30 375.30 342.30 309.30 276.30 243.30 210.30 177.30 144.30 111.30 78.30 45.30 12.30 -20.71 -53.71 -86.71 -119.71 -152.71 -185.71 -218.71 -251.71 -284.71 -317.71 -350.71 -383.71 -416.71 -449.71 -482.71 -515.71 -548.71 -581.71 -614.71 Y 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 2009/07/17 ST7033 NO. 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 Ver 1.1 NAME SEG[67] SEG[68] SEG[69] SEG[70] SEG[71] SEG[72] SEG[73] SEG[74] SEG[75] SEG[76] SEG[77] SEG[78] SEG[79] SEG[80] SEG[81] SEG[82] SEG[83] SEG[84] SEG[85] SEG[86] SEG[87] SEG[88] SEG[89] SEG[90] SEG[91] SEG[92] SEG[93] SEG[94] SEG[95] NC COM[0] COM[1] COM[2] COM[3] NC NC NC NC NC NC NC NC NC NC NC NC NC NC X -647.71 -680.71 -713.71 -746.71 -779.71 -812.71 -845.71 -878.71 -911.71 -944.71 -977.71 -1010.71 -1043.71 -1076.71 -1109.71 -1142.71 -1175.71 -1208.71 -1241.71 -1274.71 -1307.71 -1340.71 -1373.71 -1406.71 -1439.71 -1472.71 -1505.71 -1538.71 -1571.71 -1632.40 -1669.60 -1706.80 -1744.00 -1781.20 -1818.40 -1855.60 -1892.80 -1930.00 -1967.20 -2004.40 -2041.60 -2078.80 -2116.00 -2153.20 -2190.40 -2227.60 -2264.80 -2302.00 Y 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 282.75 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 NO. 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 4/39 NAME NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC VM VM VM VGO VGO VGI VGI VGI VGI VGS /RESB /CSB PS0 PS1 TMX TMY BR MODE CP VSS VSS VSS VSS VSS RW_WR E_RD DA A0 D[7] D[6] D[5] D[4] D[3] X -2339.20 -2376.40 -2413.60 -2450.80 -2450.80 -2413.60 -2376.40 -2339.20 -2302.00 -2264.80 -2227.60 -2190.40 -2153.20 -2116.00 -2078.80 -1991.84 -1932.53 -1873.23 -1813.92 -1754.62 -1695.31 -1636.01 -1576.70 -1517.40 -1458.09 -1398.79 -1339.49 -1280.18 -1220.88 -1161.57 -1102.27 -1042.96 -983.66 -924.35 -865.05 -805.74 -746.43 -687.13 -627.83 -568.52 -509.22 -449.91 -390.61 -331.30 -272.00 -212.69 -153.39 -94.08 Y 293.00 293.00 293.00 293.00 -293.00 -293.00 -293.00 -293.00 -293.00 -293.00 -293.00 -293.00 -293.00 -293.00 -293.00 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 2009/07/17 ST7033 NO. 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 Ver 1.1 NAME D[2] D[1] D[0] OSC VDD1 VDD1 VDD1 VDD1 VDD2 VDD2 VDD2 VDD2 VRS T[1] T[2] T[3] T[4] T[5] T[6] T[0] T[7] T[8] T[9] T[10] T[11] T[12] V0O V0O V0I V0I V0I V0I V0S XV0O XV0O XV0I XV0I XV0I XV0I XV0S NC NC NC NC NC NC NC X -34.78 24.54 83.84 143.15 202.45 261.75 321.06 380.37 439.67 498.97 558.28 617.59 676.89 723.54 756.84 790.14 823.44 856.74 890.04 928.84 967.64 1000.94 1034.24 1067.54 1100.84 1134.14 1187.58 1246.89 1306.20 1365.50 1424.80 1484.11 1543.42 1605.87 1665.17 1724.48 1783.79 1843.09 1902.39 1961.70 2041.60 2078.80 2116.00 2153.20 2190.40 2227.60 2264.80 Y -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -307.75 -307.75 -307.75 -307.75 -307.75 -307.75 -307.75 -307.75 -307.75 -307.75 -307.75 -307.75 -307.75 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -311.50 -293.00 -293.00 -293.00 -293.00 -293.00 -293.00 -293.00 NO. 234 235 236 237 238 5/39 NAME NC NC NC NC NC X 2302.00 2339.20 2376.40 2413.60 2450.80 Y -293.00 -293.00 -293.00 -293.00 -293.00 2009/07/17 ST7033 5. BLOCK DIAGRAM SEG0...SEG95 COM0...COM3 SEGMENT Drivers COMMON Drivers VM VG VM VGI VGO VGS Voltage Follower Display Data Latchs XV0I XV0O XV0S XV0 Generator V0I V0O V0S V0 Generator VDD2 Power System XV0 V0 Display Data RAM (DDRAM) 4X96 Data Register VDD1 VSS Address Counter COMMON Output Controller Timing Generator Oscillator OSC Control Registers Command Decoder MPU INTERFACE (Parallel / Serial) /RESB D7 D6 D5 D4 D3 D2 D1 D0 E_RD RW_WR A0 /CSB TMY TMX BR CP MODE DA PS1 PS0 Reset Circuit Figure 1. Block Diagram Ver 1.1 6/39 2009/07/17 ST7033 6. PINNING DESCRIPTIONS Pin Name LCD driver outputs I/O Description Pin Count LCD segment driver outputs. The display data and the M signal control the output voltage of segment driver. Display data SEG0 to SEG95 Segment drover output voltage Frame O - H H + L L + Power save mode Normal display Reverse display VG VSS VSS VG VSS VSS VG VG VSS VSS 96 LCD column driver outputs. The internal scanning data and the M signal control the output voltage of common driver. Display data COM0 to COM3 Common drover output voltage Frame Normal display O H H + L L + Power save mode Reverse display 68 XV0 V0 VM VM VSS MICROPROCESSOR INTERFACE Microprocessor interface mode selection pins. PS[1,0] I PS1 PS0 Interface Mode 1 1 8080-series parallel MPU interface 1 0 6800-series parallel MPU interface 0 1 4-line SPI MPU interface 0 0 3-line SPI MPU interface 2 Chip select input pin. /CSB I Data/instruction I/O is enabled only when /CSB is "L". When chip select is 1 non-active, D7…D0 are high impedance. /RESB A0 I I Reset input pin. When /RESB is "L", initialization is executed. It determines whether the data bits are data or a command. A0=" H “: Indicates that D0 to D7 are display data. A0=" L “: Indicates that D0 to D7 are control data. There is no A0 pin in three line , so this pin can fix to ” H” 1 1 Read/Write operation control pin (if using Parallel interface). MPU Type RW_WR I 6800-series RW_WR R/W Interface Mode R/W=”H”: Read; R/W=”L”: Write. 1 Signals (Instruction or Data) on 8080-series /WR data bus will be latched at the raising edge of this signal. Ver 1.1 7/39 2009/07/17 ST7033 Read/Write operation control pin (if using Parallel interface). MPU Type E_RD Interface Mode Signals (Instruction or Data) on E_RD I 6800-series E data bus will be latched by MPU or this IC (depends on R/W) at 1 the falling edge of this signal. Internal status (or display data) 8080-series /RD will be read out to data bus after the falling edge of this signal. Data Bus. If /CSB signal is not actived, D7…D0 are high impedance. Parallel interface (6800 or 8080): Serial SPI interface (3 line or 4 line): I/O port which is connected to the standard 8-bit MPU data bus. D0…D7 I 8 SCLK: D0; SDA: D1~D3; D4~D7 must connect to VDD1. LCD DRIVER SUPPLY OSC OSC=”H”: Use the built-in oscillator. OSC=”L”: Both external clock and built-in oscillator are inhibited. And the display circuits will not be clocked and kept in a DC state. To I avoid this, the chip should always be put into Power-Down Mode 1 before stopping the clock. If using external clock, connect this pin to the external clock. POWER SUPPLY VSS Power VDD1 Power Ground. 5 Digital circuits supply voltage. The 2 power supply rails, VDD1 and VDD2, could be connected together. 4 Use this power to be the high voltage level for the Option pins. VDD2 Power Analog circuits supply voltage. The 2 power supply rails, VDD and VDD2, could be connected together. 4 Negative LCD driver supply voltages. XV0I, XV0O, XV0S Power Supply V0I, V0O, V0S; Power VGI, VGO, VGS Supply XV0I, XV0O & XV0S should be separated in ITO layout. 7 XV0I, XV0O & XV0S should be connected together in FPC layout. This is a multi-level power supply for the liquid crystal. V0 ≥ VG ≥ VM ≥ VSS ≥ XV0 V0I, V0O & V0S should be separated in ITO layout. V0I, V0O & V0S should be connected together in FPC layout. VGI, VGO & VGS should be separated in ITO layout. 6 VGI, VGO & VGS should be connected together in FPC layout. VM VRS Power Supply Power LCD driving voltage for commons. Reserved to monitor internal Voltage Regulator reference level, must be left open. 3 1 Configuration Pins MODE I CP I Test pin. 1 Must fix to “L” Set Booster stage. 1 VSS=4X; VDD=5X. Ver 1.1 8/39 2009/07/17 ST7033 BR I Test pin. 1 Must fix to “L” Test Pin T0~T12 --- Test pins. Do not use these pins. 13 Mirror X: SEG bi-direction selection (refer to pad center coordinates). TMX I TMX connect to VSS :MX mode1(refer to segment driver direction select) 1 TMX connect to VDD1 :MX mode2(refer to segment driver direction select) Mirror Y: COM bi-direction selection (refer to pad center coordinates). TMY I TMY connect to VSS: MY mode1(refer to common driver direction select) 1 TMY connect to VDD1: MY mode2(refer to common driver direction select) DA I Test pin. 1 Must fix to “L” Recommended I/O PIN ITO Resistance Limitation PIN Name ITO Resister PS[1:0],OSC,CP,BR <5KΩ T0~T12,VRS Floating VDD1, VDD2, VSS <100Ω V0, VG , VM , XV0 <500Ω A0,/WR,/RD,/CSB, D0 …D7 <1KΩ /RESB RESB<10KΩ Ver 1.1 9/39 2009/07/17 ST7033 7. FUNCTIONS DESCRIPTION MICROPROCESSOR INTERFACE Chip Select Input There is /CSB pin for chip selection. The ST7033 can interface with an MPU when /CSB is "L". When /CSB is “H”, the internal shift register and the counter are reset. Parallel / Serial Interface ST7033 has five types of interface with an MPU, which are three serial and two parallel interfaces. This parallel or serial interface is determined by PS [1:0] pin as shown in Table 1. PS1 H H L L PS0 H L H L /CSB A0 State /CSB A0 8080-series parallel MPU interface /CSB A0 6800-series parallel MPU interface /CSB A0 4 Pin-SPI MPU interface /CSB "*" 3 Pin-SPI MPU interface Table 1. Parallel/Serial Interface Mode Parallel Interface The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS1~PS0 as shown in Table 2. The type of data transfer is determined by signals at A0, /RD (E) and /WR(R/W) as shown in Table 3. PS1 H H Common A0 H H L L PS0 H L 6800-series E R/W H H H L H H H L /CSB A0 /RD (E) /WR (R/W) DB0 to DB7 MPU bus /CSB A0 /RD /WR DB0 to DB7 8080-series /CSB A0 E R/W DB0 to DB7 6800-series Table 2. Microprocessor Selection for Parallel Interface 8080-series Description /RD /WR L H Display data read out H L Display data write L H Register status read H L Writes to internal register (instruction) Table 3. Parallel Data Transfer NOTE: By fixing /RD (E) pin at high (VDD1) in 6800-series interface mode, /CSB can be used as enable signal. In this case, interface data is latched at the rising edge of /CSB and the access type is determined by signals on A0, /WR(R/W) just same as 6800-series mode. Ver 1.1 10/39 2009/07/17 ST7033 Serial Interface Serial Mode 4-line SPI interface PS1 L PS0 H /CSB /CSB 3-line SPI interface L L /CSB A0 Used Not Used Fix to “H” Table 4. Microprocessor Selection for Serial Interface PS1= “L”, PS0= “H”: 4-line SPI interface When the ST7033 is active (/CSB=”L”), serial data (D1) and serial clock (D0) inputs are enabled. When /CSB is “High”, the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication is controlled by the register selection pin (A0). The signals transferred on data bus will be display data when A0 is high and will be instruction when A0 is low. The read feature is not supported in this mode. Serial data on SDA (D1) is latched at the rising edge of serial clock on SCLK (D0). After the eighth serial clock, the serial data will be processed as 8-bit parallel data. The DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access. Figure 2. 4-Line SPI Timing 3-line SPI interface When ST7033 is active (/CSB=”L”), SDA-out, SDA-in and SCL inputs are enabled. When ST7033 is not active (/CSB=”H”), the internal 8-bit shift register and the 3-bit counter are reset. The A0 pin is not available in this mode. Before issuing serial data, an A0 bit is required to indicate the access is data or instruction. The read feature is not supported in this mode except ID code read feature. Serial data on SDA (D1) is latched at the rising edge of serial clock on SCLK (D0). After the eighth serial clock, the serial data will be processed as 8-bit parallel data. The DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access. Figure 3. 3-Line SPI Timing Ver 1.1 11/39 2009/07/17 ST7033 DISPLAY DATA RAM (DDRAM) The ST7033 contains a 4x96 bit static RAM that stores the display data. The display data RAM store the dot data for the LCD.It is 4-row by 96-column addressable array. Each pixel can be selected when the column addresses are specified.Data are written to ram directly through D0 to D3 and D4 to D7 are disabled bits. The display data from the microprocessor correspond to the LCD common lines. The microprocessor can write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker. Line Address Circuit This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line Address repeatedly.At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 96-bit RAM data to the display data latch circuit. Column Address Circuit Column Address Circuit has an 8-bit preset counter that provides Column Address to the Display Data RAM. The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data write command. This allows the MPU display data to be accessed continuously. ADDRESSING Data is downloaded in bytes into the RAM matrix of ST7033 as indicated in Figure 4. The display RAM has a matrix of 4 by 96 bits. The address pointer addresses the columns. The column address ranges are: 0 to 95 (1011111), .Addresses outside these ranges are not allowed. After the last column address (95) wraps around to 0 . Ver 1.1 12/39 2009/07/17 ST7033 Data Structure Line Address D0 D1 D2 D3 D4 D5 D6 D7 Data …… D4~D7 are disabled bits SEG95 SEG94 SEG93 SEG92 SEG91 SEG5 SEG6 SEG0 SEG1 SEG2 SEG3 SEG4 SEG87 SEG88 SEG89 SEG90 SEG91 SEG92 SEG93 SEG94 SEG95 …… SEG90 SEG89 Reverse direction MX=1 SEG7 SEG8 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 SEG0 …… SEG88 SEG87 Normal direction MX=0 5FH 5EH 5DH 5CH 5BH 5AH 59H 58H 57H 08H 07H 06H 05H 04H 03H 02H 01H 00H …… Column Address 00H 01H 02H 03H COM output Start COM0 COM1 COM2 COM3 COM3 COM2 COM1 COM0 Normal Reverse direction direction MY=0 MY=1 Start SEG output Figure 4. Display Data RAM Map (1/4 Duty) Ver 1.1 13/39 2009/07/17 ST7033 LCD layout reference Layout method LCD SEG a SEGn+2 SEGn+3 SEGn+5 Display RAM filling order SEGn SEGn+1 g c SEGn+7 d DP a SEGn SEGn+1 g SEGn+2 e c COM1 d SEGn+3 DP a SEGn+1 SEGn+2 e c COM1 COM2 d DP a COM0 e d DP COM1 x x x x x x x x COM2 x x x x x x x x COM3 x x x x x x x x SEGn SEGn+1 COM0 a f e d COM1 b g c DP COM2 x x x x COM3 x x x x SEGn+1 SEGn+2 e COM1 c COM3 d DP SEGn+2 b a COM1 DP d e COM2 c g x COM3 x x x SEGn SEGn+1 a SEGn+3 SEGn+1 SEGn+2 COM0 COM0 g SEGn+1 g COM2 b f Method 4 SEGn+7 f SEGn SEGn g SEGn SEGn+6 a COM0 b f Method 3 SEGn+5 b COM0 b f Method 2 SEGn+4 c SEGn e SEGn+6 SEGn+3 COM0 COM0 b f SEGn+4 Method 1 LCD COM f f COM1 c e COM2 b g COM3 DP d Figure 5. Relationships between LCD layout and display RAM filling order and display data Notes 1:’ x ‘= data bit unchanged. Notes 2:ST7033 is always operating in 1/4 duty. Ver 1.1 14/39 2009/07/17 ST7033 LCD DRIVER CIRCUIT 4-channel common drivers and 96-channel segment drivers configure this driver circuit. This LCD panel driver voltage depends on the combination of display data and frame (positive or negative). Figure 6. LCD Driver Waveforms Liquid Crystal Driver Power Circuit The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. Figure 7. External Components on V0, XV0 and VG Ver 1.1 15/39 2009/07/17 ST7033 8. RESET CIRCUIT Setting /RESB to “L” or Reset instruction can initialize internal function. When /RESB becomes “L”, following procedure is occurred. Power save mode is entered --Oscillator circuit is stopped --The LCD power supply circuit is stopped --Display OFF --Display all point ON --Segment/Common output go to the VSS level Display normal Column address: 0 Common scan direction : MY=0 Segment scan direction : MX=0 Power control [VB VR VF]=0 Booster: CP pad Ver 1.1 16/39 2009/07/17 ST7033 9-1. INSTRUCTION TABLE Display data write A0 1 D7 D7 D6 D6 D5 D5 CODE D4 D4 D3 D3 D2 D2 D1 D1 Display ON/OFF 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 * X6 X5 X4 0 0 0 0 0 X3 X2 X1 X0 COMMAND Display normal/reverse Display all points ON/OFF Page address set Column address set Upper 3-bit address Column address set Lower 4-bit address Segment driver direction select 0 1 0 1 0 0 0 0 Common driver direction select 0 1 1 0 0 MY * * Power control set 0 0 0 1 0 1 VB VR Power save mode - - - - - - - - Reset 0 NOP 0 Enter mode set 0 Duty mode set 0 Finish mode set 0 Notes: “*” = Disabled bit 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 Ver 1.1 17/39 D0 D0 0 1 0 1 0 1 DESCRIPTION Write data to RAM LCD display 0:OFF,1:ON LCD display 0:normal;1:reverse LCD display 0:normal;1:all points ON Set the DDRAM page address Set the DDRAM column address Sets the correspondence between the DDRAM column MX address and the SEG driver output Sets the correspondence between the DDRAM line * address and the COM driver output Set the on-chip power supply VF circuit operation mode Compound command of Display OFF and Display-all-points-ON 0 Software reset 1 No operation 1 Enter mode set 0 Set 1/4 duty 0 Finish mode set 2009/07/17 ST7033 9-2. INSTRUCTION DESCRIPTION Display data Write 8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address . The column address is increased by 1 automatically so that the microprocessor can continuously write data . During auto-increment, the column address wraps to 0 after the last column is written. A0 1 D7 D6 D5 D4 D3 Write data D2 D1 D0 Description Write to the DDRAM D0 0 1 Description Display OFF Display ON Display ON/OFF This command turns the display ON and OFF. A0 D7 D6 D5 D4 D3 D2 D1 0 1 0 1 0 1 1 1 Display Normal/Reverse This command can reserve the lit and unlit without overwriting the content of the DDRAM. A0 D7 D6 D5 D4 D3 D2 D1 0 1 0 1 0 0 1 1 D0 0 1 Description LCD ON Voltage LCD OFF Voltage Display All Points ON/OFF The command makes it possible to force all display points ON regardless of the content of the DDRAM. Even when this is done, the DDRAM contents are maintained. This command takes priority over the Display normal/reverse command. A0 D7 D6 D5 D4 D3 D2 D1 D0 Description 0 Normal Display Mode 0 1 0 1 0 0 1 0 1 Display All Points ON When the Display all points ON command is executed when in the Display OFF mode, Power Save mode is entered. See the “Power Save mode” for detail. Page Address Set This command specifies the start page address of the DDRAM. A0 D7 D6 D5 D4 D3 D2 D1 D0 Description 0 1 0 1 1 0 0 0 0 Ser page address Column Address Set This command specifies the column address of the DDRAM. The column address is split into two sections (the upper 3-bits and lower 4-bits) when it is set. Each time the DDRAM is accessed, the column address automatically increments by +1, imaging it possible for the MCU to continuously access to the display data. After the last column address (5FH), column address returns to 00H. A0 D7 D6 D5 D4 D3 D2 D1 D0 Description 0 0 0 0 1 0 * X3 X6 X2 X5 X1 X4 X0 Upper bit address Lower bit address Notes:’ * ‘Disabled bit Ver 1.1 18/39 2009/07/17 ST7033 X6 0 0 0 0 : 1 1 X5 0 0 0 0 : 0 0 X4 0 0 0 0 : 1 1 X3 0 0 0 0 : 1 1 X2 0 0 0 0 : 1 1 X1 0 0 1 1 : 1 1 X0 0 1 0 1 : 0 1 Column Address 0 1 2 3 : 94 95 Segment Driver Direction Select This command can reverse the correspondence between the DDRAM column address and the segment driver output A0 D7 D6 D5 D4 D3 D2 D1 D0 Description MX=0 SEG95→ SEG0 TMX=VSS MX=1 SEG0→ SEG95 MX mode 1 0 1 0 1 0 0 0 0 MX MX=0 SEG0 → SEG95 TMX=VDD1 MX=1 SEG95 → SEG0 MX mode 2 Common Driver Direction Select This command can reverse the correspondence between the DDRAM line address and the common driver output A0 D7 D6 D5 D4 D3 D2 D1 D0 Description TMY=VSS MY=0 COM0→ COM67 MY mode 1 MY=1 COM67→ COM0 0 1 1 0 0 MY * * * TMY=VDD1 MY=0 COM67→ COM0 MY mode 2 MY=1 COM0→ COM67 Notes1:’ * ‘Disabled bit Power control set This command sets the on-chip power supply function ON/OFF. A0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 1 Description Booster: OFF 0 0 0 Voltage Regulator: OFF Voltage Follower: OFF Booster: ON 1 1 1 Voltage Regulator: ON Voltage Follower: ON (D2 : Booster, D1 : Voltage Regulator, D0 : Voltage Follower) Set 1/4 duty mode (Combinative instructions) These combinative instructions set the driver into 1/4 duty mode. Enter mode set A0 0 D7 1 D6 1 D5 1 D4 1 D3 0 D2 0 D1 0 D0 1 Description Enter mode set D6 0 D5 1 D4 0 D3 1 D2 1 D1 0 D0 0 Description Set 1/4 duty D6 1 D5 1 D4 1 D3 0 D2 0 D1 0 D0 0 Description Finish mode set Duty mode set A0 0 D7 1 Finish mode set A0 0 Ver 1.1 D7 1 19/39 2009/07/17 ST7033 Power Save Mode If the display all points ON command is executed when the display is in display OFF mode, power saver mode is entered. This mode stops every operation of the LCD display system. Power save (Display OFF & Display all points ON) Command Power save mode Effect Power save OFF (Display all points OFF) Power save mode canceled Figure 8. Power Save Mode The internal states in power save mode are as follows: -The oscillator circuit is stopped -The LCD driver circuit is stopped -The LCD driver circuit is stopped and segment/common driver output s to VSS level -The display data and operation mode before execution of the Power save are held, and the MCU can access to the DDRAM and internal registers. Reset When this command is issued, the driver is initialized. This command doesn’t change DDRAM content. A0 0 D7 1 D6 1 D5 1 D4 0 D3 0 D2 0 D1 1 D0 0 Description Software reset D5 1 D4 0 D3 0 D2 0 D1 1 D0 1 Description No operation NOP Non-operation command A0 0 Ver 1.1 D7 1 D6 1 20/39 2009/07/17 ST7033 Command Description Referential instruction setup flow for power on: Referential instruction setup flow for power down: Figure 9. Power On and Power Down Sequence Ver 1.1 21/39 2009/07/17 ST7033 10. LIMITING VALUES In accordance with the Absolute Maximum Rating System; see notes 1 and 2. Parameter Symbol Conditions Unit Power supply voltage VDD1 -0.3 ~ 3.6 V Power supply voltage VDD2 -0.3 ~ 3.6 V Power supply voltage (VDD2 standard) V0, |XV0| -0.3 ~ 13.5 V Power supply voltage (VDD2 standard) VG, VM 0.3 to V0 V Operating temperature TOPR –30 to +80 °C Storage temperature TSTR –65 to +150 °C Figure 10. Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of VG, VM, VSS, and XV0 are always such that V0 ≧ VG ≧ VM ≧ VSS ≧ XV0 Ver 1.1 22/39 2009/07/17 ST7033 11. HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices 12. DC CHARACTERISTICS ℃ to +80℃ ℃; unless otherwise specified. VSS = 0 V; Ta = -30℃ Item Symbol Condition Rating Min. Typ. Max. Units Applicable Pin Operating Voltage (1) VDD1 1.65 — 3.4 V VSS Operating Voltage (2) VDD2 (Relative to VSS) 2.5 — 3.4 V VSS High-level Input Voltage VIHC 0.7 x VDD1 — VDD1 V Low-level Input Voltage VILC VSS — 0.8 x VDD1 — VSS — High-level Output Voltage VOHC IOH=1mA Low-level Output Voltage VOLC IOL1mA 0.3 x VDD1 V VDD1 V 0.2 x VDD1 V Input leakage current ILI –1.0 — 1.0 μA Output leakage current ILO –3.0 — 3.0 μA — 0.8 — Liquid Crystal Driver ON Resistance Internal Power Frame frequency Ver 1.1 Supply Step-up output voltage Circuit Voltage regulator Circuit Operating Voltage RON Ta= 25°C △V=10% V0 =9.0 V KΩ VG = 2.0 V FR — 0.9 — — 70 — SEGn COMn Hz V0 (V0 To VSS) — 4 — V V0 XV0 (VG To XV0) — -4 — V XV0 23/39 2009/07/17 ST7033 Dynamic Consumption Current : During Display, with the Internal Power Supply ON Current consumed by total ICs(bare die) Test pattern Symbol Condition Power Down ISS Ta = 25°C Rating Min. Typ. Max. — 1.0 10 Units Notes μA Notes to the DC characteristics 1. The maximum possible V0 oltage that may be generated is dependent on voltage, temperature and (display) load. 2. During power down all static currents are switched off. Ver 1.1 24/39 2009/07/17 ST7033 13. TIMING CHARACTERISTICS System Bus Read/Write Characteristics 1 (For the 8080 Series MPU) A0 tAW8 tAH8 tAS8 /CSB tCYC8 tCCLR,tCCLW WR,RD tCCHR,tCCHW tDS8 tDH8 D0 to D7 (Write) tACC8 tOH8 D0 to D7 (Read) Figure 11. Parallel 8080 Series Interface Characteristics (VDD1 = 3.3V , Ta =25°C) Rating Item Signal Symbol Condition Units Min. Max. tAH8 10 — tAW8 80 — Address setup time tAS8 60 — System cycle time tCYC8 350 — Enable L pulse width (WRITE) tCCLW 70 — tCCHW 50 — tDS8 60 — tDH8 50 — Address hold time Address setup time A0 ns /WR Enable H pulse width (WRITE) WRITE Data setup time D0 to D7 WRITE Address hold time Ver 1.1 25/39 2009/07/17 ST7033 (VDD1 = 2.8V , Ta =25°C ) Item Signal Symbol Condition Rating Min. Max. tAH8 15 — tAW8 120 — Address setup time tAS8 80 — System cycle time tCYC8 450 — Enable L pulse width (WRITE) tCCLW 120 — tCCHW 100 — tDS8 90 — tDH8 60 — Address hold time Address setup time A0 /WR Enable H pulse width (WRITE) WRITE Data setup time D0 to D7 WRITE Address hold time Units ns (VDD1 = 1.8V , Ta =25°C) Item Signal Symbol Condition Rating Min. Max. tAH8 30 — tAW8 150 — Address setup time tAS8 100 — System cycle time tCYC8 550 — Enable L pulse width (WRITE) tCCLW 170 — tCCHW 150 — tDS8 120 — tDH8 70 — Address hold time Address setup time A0 /WR Enable H pulse width (WRITE) WRITE Data setup time WRITE Address hold time D0 to D7 Units ns Notes1:The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,(tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. Notes2: All timing is specified using 20% and 80% of VDD1 as the reference. Notes3: tCCLW and tCCLR are specified as the overlap between /CSB being “L” and /WR and /RD being at the “L” level. Ver 1.1 26/39 2009/07/17 ST7033 System Bus Read/Write Characteristics 1 (For the 6800 Series MPU) A0 R/W tAW6 tAH6 /CSB tCYC6 tEWHR, tEWHW E tEWLR, tEWLW tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) Figure 12. Parallel 6800 Series Interface Characteristics (VDD1 = 3.3V , Ta =25°C) Item Signal Address hold time Address setup time A0 R/W System cycle time Enable L pulse width (WRITE) E Enable H pulse width (WRITE) WRITE Data setup time WRITE Address hold time Ver 1.1 D0 to D7 Symbol Condition Rating Min. Max. tAH6 10 — tAW6 80 — tCYC6 240 — tEWLW 70 — tEWHW 50 — tDS6 60 — tDH6 50 — 27/39 Units ns 2009/07/17 ST7033 (VDD1 = 2.8V , Ta =25°C) Item Signal Address hold time Address setup time A0 R/W System cycle time Enable L pulse width (WRITE) E Enable H pulse width (WRITE) WRITE Data setup time D0 to D7 WRITE Address hold time Symbol Condition Rating Min. Max. tAH6 15 — tAW6 100 — tCYC6 340 — tEWLW 120 — tEWHW 100 — tDS6 120 — tDH6 60 — Units ns (VDD1 = 1.8V , Ta =25°C) Item Signal Address hold time Address setup time A0 R/W System cycle time Enable L pulse width (WRITE) E Enable H pulse width (WRITE) WRITE Data setup time WRITE Address hold time D0 to D7 Symbol Condition Rating Min. Max. tAH6 30 — tAW6 150 — tCYC6 440 — tEWLW 170 — tEWHW 150 — tDS6 180 — tDH6 70 — Units ns Notes1:The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,(tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. Notes2:All timing is specified using 20% and 80% of VDD1 as the reference. Notes3:tEWLW and tEWLR are specified as the overlap between /CSB being “L” and E. Ver 1.1 28/39 2009/07/17 ST7033 SERIAL INTERFACE (4-Line Interface) tCSS tCSH /CSB tSAS tSAH A0 tSCYC tSLW SCLK tSHW tf tr tSDS tSDH SDA Figure 13. 4- Line Serial Interface Characteristics (VDD1 = 3.3V , Ta =25°C ) Item Signal Serial Clock Period SCL “H” pulse width SCLK Symbol Condition Rating Min. Max. tSCYC 120 — tSHW 60 — SCL “L” pulse width tSLW 60 — Address setup time tSAS 20 — tSAH 90 — Address hold time Data setup time A0 SDA Data hold time CS-SCL time /CSB CS-SCL time tSDS 20 — tSDH 10 — tCSS 20 — tCSH 120 — Units ns (VDD1 = 2.8V , Ta =-25°C) Item Signal Serial Clock Period SCL “H” pulse width SCLK SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time CS-SCL time Ver 1.1 A0 SDA /CSB Symbol Condition Rating Min. Max. tSCYC 200 — tSHW 100 — tSLW 100 — tSAS 30 — tSAH 120 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 150 — 29/39 Units ns 2009/07/17 ST7033 (VDD1 = 1.8V , Ta =25°C) Item Signal Serial Clock Period SCL “H” pulse width SCLK SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time CS-SCL time A0 SDA /CSB Symbol Condition Rating Min. Max. tSCYC 280 — tSHW 140 — tSLW 140 — tSAS 50 — tSAH 150 — tSDS 50 — tSDH 50 — tCSS 40 — tCSH 180 — Units ns Notes1: The input signal rise and fall time (tr, tf) are specified at 15 ns or less. Notes2: All timing is specified using 20% and 80% of VDD1 as the standard. Ver 1.1 30/39 2009/07/17 ST7033 SERIAL INTERFACE (3-Line Interface) Figure 14. 3- Line Serial Interface Characteristics (VDD1=3.3V ,Ta=25℃) Item Signal Serial Clock Period(Write) SCL “H” pulse width(Write) SCLK SCL “L” pulse width(Write) Data setup time Data hold time CS-SCL time CS-SCL time SDAIN /CSB Symbol Condition Rating Min. Max. tSCYC 120 — tSHW 60 — tSLW 60 — tSDS 30 — tSDH 30 — tCSS 30 — tCSH 30 — SCL-CS /CSB tSCC 10 — CS “H” pulse width /CSB tCHW 30 — Ver 1.1 31/39 Units ns 2009/07/17 ST7033 (VDD1=2.8V ,Ta=25℃) Item Signal Serial Clock Period(Write) SCL “H” pulse width(Write) SCLK SCL “L” pulse width(Write) Data setup time SDAIN Data hold time CS-SCL time /CSB CS-SCL time Symbol Condition Rating Min. Max. tSCYC 180 — tSHW 90 — tSLW 90 — tSDS 40 — tSDH 40 — tCSS 40 — tCSH 40 — SCL-CS /CSB tSCC 15 — CS “H” pulse width /CSB tCHW 35 — Units ns (VDD1=1.8V ,Ta=25℃) Item Signal Serial Clock Period(Write) SCL “H” pulse width(Write) SCLK SCL “L” pulse width(Write) Data setup time Data hold time CS-SCL time CS-SCL time SDAIN /CSB Symbol Condition Rating Min. Max. tSCYC 250 — tSHW 100 — tSLW 100 — tSDS 60 — tSDH 60 — tCSS 60 — tCSH 65 — SCL-CS /CSB tSCC 20 — CS “H” pulse width /CSB tCHW 45 — Units ns Notes1:The input signal rise and fall time (tr, tf) are specified at 15 ns or less. Notes2:All timing is specified using 30% and 70% of VDD1 as the standard. Ver 1.1 32/39 2009/07/17 ST7033 14. RESET TIMING /RESB tRJ tRW tR Internal status During reset Reset complete Figure 15. Reset Timing Characteristics (VDD1 = 3.3V , Ta = 25°C ) Item Reset time Signal Symbol Condition /RESB tR Rating Min. Typ. Max. 20 — — Units us Reset “L” pulse width /RESB tRW 2 — — us Reset rejection (for noise spike) /RESB tRJ — — 1 us (VDD1 = 2.8V , Ta =25°C ) Item Signal Symbol Condition Rating Min. Typ. Max. Units Reset time /RESB tR 20 — — us Reset “L” pulse width /RESB tRW 2 — — us Reset rejection (for noise spike) /RESB tRJ — — 1 us (VDD1 =1.8V , Ta = 25°C ) Item Signal Symbol Condition Rating Min. Typ. Max. Units Reset time /RESB tR 30 — — us Reset “L” pulse width /RESB tRW 3 — — us Reset rejection (for noise spike) /RESB tRJ — — 1 us Ver 1.1 33/39 2009/07/17 ST7033 15. APPLICATION NOTE ............................................. 1 23 24 119 120 121 122 123 124 142 NC NC SEG0 SEG95 NC COM0 COM1 COM2 COM3 NC 238 227 226 222-225 219 220-221 215-218 213-214 212 211 210 209 208 207 206 205 204 203 202 201 200 199 195-198 191-194 190 189 188 187 186 185 184 183 182 181 180 179 178 173-177 172 171 170 169 168 167 166 165 164 163 153 159-162 157-158 154-156 143 NC NC XV0S XV0I XV0O V0S V0I V0O T12 T11 T10 T9 T8 T7 T0 T6 T5 T4 T3 T2 T1 VRS VDD2 VDD1 OSC D0 D1 D2 D3 D4 D5 D6 D7 A0 DA E R/ W Vss CP MODE BR TMY TMX PS1 PS0 /CSB /RESB VGS VGI VGO VM NC NC 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 XV0 V0 VDD2 VDD1 D0 D1 D2 D3 D4 D5 D6 D7 A0 E R/W VSS /CSB /RESB VG 2009/07/17 34/39 Ver 1.1 ......... ................ .......................................... ............................................. ............................................. ST7033 IC PAD SIDE C=1.0uF C=1.0uF Figure 16. 6800 Parallel Application ST7033 ............................................. 1 23 24 119 120 121 122 123 124 142 NC NC SEG0 SEG95 NC COM0 COM1 COM2 COM3 NC 238 227 226 222-225 219 220-221 215-218 213-214 212 211 210 209 208 207 206 205 204 203 202 201 200 199 195-198 191-194 190 189 188 187 186 185 184 183 182 181 180 179 178 173-177 172 171 170 169 168 167 166 165 164 163 153 159-162 157-158 154-156 143 NC NC XV0S XV0I XV0O V0S V0I V0O T12 T11 T10 T9 T8 T7 T0 T6 T5 T4 T3 T2 T1 VRS VDD2 VDD1 OSC D0 D1 D2 D3 D4 D5 D6 D7 A0 DA /RD /WR Vss CP MODE BR TMY TMX PS1 PS0 /CSB /RESB VGS VGI VGO VM NC NC 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 XV0 V0 VDD2 VDD1 D0 D1 D2 D3 D4 D5 D6 D7 A0 /RD /WR VSS /CSB /RESB VG 2009/07/17 35/39 Ver 1.1 ......... ................ .......................................... ............................................. ............................................. ST7033 IC PAD SIDE C=1.0uF C=1.0uF Figure 17. 8080 Parallel Applicaiton ST7033 ............................................. ............................................. ............................................. .......................................... ST7033 ................ ......... IC PAD SIDE C=1.0uF C=1.0uF Figure 18. 3-Line Serial Application Ver 1.1 36/39 2009/07/17 ST7033 ............................................. 1 23 24 119 120 121 122 123 124 142 NC NC SEG0 SEG95 NC COM0 COM1 COM2 COM3 NC 238 227 NC NC NC NC BR TMY TMX PS1 PS0 /CSB /RESB VGS VGI VGO VM MODE XV0S 226 XV0I 222-225 XV0O 220-221 219 V0S 215-218 V0I 213-214 V0O 212 T12 211 T11 210 T10 T9 209 T8 208 207 T7 206 T0 205 T6 204 T5 203 T4 202 T3 201 T2 200 T1 199 VRS VDD2 195-198 191-194 VDD1 OSC SCLK SDA_IN SDA_OUT SDA_OUT D4 D5 D6 D7 A0 DA /RD /WR Vss CP 190 189 188 187 186 185 184 183 182 181 180 179 178 173-177 172 171 170 169 168 167 166 165 164 163 153 159-162 157-158 154-156 143 11 10 9 8 7 6 5 4 3 2 1 XV0 V0 VDD2 VDD1 SCLK SDA A0 VSS /CSB /RESB VG 2009/07/17 37/39 Ver 1.1 ......... ................ .......................................... ............................................. ............................................. ST7033 IC PAD SIDE C=1.0uF C=1.0uF Figure 19. 4-Line Serial Application ST7033 ITO Layout Reference About ITO layout, please refer the following pictures: XV0O VGO VGI VGS VDD1 VDD2 FPC PIN Ver 1.1 XV0I XV0S V0O V0I V0S FPC PIN FPC PIN FPC PIN 38/39 2009/07/17 ST7033 ST7033 Serial Specification Revision History Version Ver 1.1 Date Description 1.0 2008/04/18 First Issue Version 1.1 2009/07/15 Modify application note 39/39 2009/07/17