ADPOW APT33GF120BR

APT33GF120BR
APT33GF120BR
1200V
52A
Fast IGBT
The Fast IGBT is a new generation of high voltage power IGBTs. Using
Non-Punch Through Technology the Fast IGBT offers superior ruggedness,
fast switching speed and low Collector-Emitter On voltage.
TO-247
• Low Forward Voltage Drop
• Ultra Low Leakage Current
• Low Tail Current
• RBSOA and SCSOA Rated
• High Freq. Switching to 20KHz
G
C
C
E
G
E
MAXIMUM RATINGS (IGBT)
Symbol
All Ratings: TC = 25°C unless otherwise specified.
APT33GF120BR
Parameter
VCES
Collector-Emitter Voltage
1200
VCGR
Collector-Gate Voltage (RGE = 20KΩ)
1200
VGE
Gate Emitter Voltage
±20
IC1
Continuous Collector Current @ TC = 25°C
52
IC2
Continuous Collector Current @ TC = 105°C
33
1
Pulsed Collector Current
ILM
RBSOA Clamped Inductive Load Current @ RG = 11Ω TC = 125 °C
EAS
Single Pule Avalanche Energy
PD
Total Power Dissipation
TJ,TSTG
TL
Volts
Amps
@ TC = 25°C
ICM
UNIT
104
66
2
65
mJ
297
Watts
-55 to 150
Operating and Storage Junction Temperature Range
°C
300
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS (IGBT)
VGE(TH)
VCE(ON)
I CES
I GES
TYP
MAX
5.5
6.5
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C)
2.7
3.2
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C)
3.3
3.9
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 0.5mA)
Gate Threshold Voltage
(VCE = VGE, I C = 700µA, Tj = 25°C)
MIN
1200
4.5
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
0.5
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
5.0
Gate-Emitter Leakage Current (VGE = ±20V, VCE = 0V)
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
Volts
mA
nA
3-2003
BVCES
Characteristic / Test Conditions
052-6206 Rev D
Symbol
APT33GF120BR
DYNAMIC CHARACTERISTICS (IGBT)
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
Turn-on Delay Time
Rise Time
MIN
Capacitance
VGE = 0V
230
VCE = 25V
f = 1 MHz
110
Gate Charge
VGE = 15V
170
I C = I C2
100
Resistive Switching (25°C)
24
VGE = 15V
85
Turn-off Delay Time
I C = I C2
25
60
Inductive Switching (150°C)
VCLAMP(Peak) = 0.66VCES
VGE = 15V
Fall Time
74
I C = I C2
2.8
Eoff
Turn-off Switching Energy
TJ = +150°C
2.8
Ets
Total Switching Losses
tr
td(off)
Turn-on Delay Time
Rise Time
Turn-off Delay Time
ns
210
R G = 10Ω
td(on)
ns
125
RG =10Ω
Turn-on Switching Energy
Eon
nC
170
Turn-on Delay Time
Rise Time
UNIT
pF
19
VCC = 0.5VCES
Turn-off Delay Time
MAX
1855
VCC = 0.8VCES
Fall Time
TYP
mJ
5.6
27
Inductive Switching (25°C)
VCLAMP(Peak) = 0.66VCES
65
VGE = 15V
ns
190
I C = I C2
Fall Time
R G = 10Ω
70
Ets
Total Switching Losses
TJ = +25°C
5.2
mJ
gfe
Forward Transconductance
8.5
20
S
MIN
TYP
tf
VCE = 20V, I C = 25A
THERMAL AND MECHANICAL CHARACTERISTICS (IGBT and FRED)
Symbol
RΘJC
Junction to Case
RΘJA
Junction to Ambient
3-2003
WT
052-6206 Rev D
Characteristic
MAX
UNIT
0.42
°C/W
Package Weight
1
Repetitive Rating: Pulse width limited by maximum junction temperature.
2
IC = IC2, VCC = 50V, RGE = 25Ω, L = 120µH, Tj = 25°C
3
See MIL-STD-750 Method 3471
APT Reserves the right to change, without notice, the specifications and information contained herein.
40
0.22
oz
5.90
gm
12V
VGE=17, 15 & 13V
11V
40
10V
20
9V
8V
7V
0
IC, COLLECTOR CURRENT (AMPERES)
IC, COLLECTOR CURRENT (AMPERES)
TC=-55°C
TC=+25°C
TC=+150°C
40
20
0
Cies
C, CAPACITANCE (pF)
1,000
f = 1MHz
Coes
100
Cres
10
.01
0.1
1.0
10
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 5, Typical Capacitance vs Collector-To-Emitter Voltage
11V
40
10V
20
9V
8V
7V
LIMITED
BY
VCE (SAT)
100µs
10
1ms
TC =+25°C
TJ =+150°C
SINGLE PULSE
10ms
1
1
10
100
1200
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 4, Maximum Forward Safe Operating Area
VGE, GATE-TO-EMITTER VOLTAGE (VOLTS)
0
2
4
6
8
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 3, Typical Output Characteristics @ VGE = 15V
3,000
VGE=17, 15 & 13V
0
4
8
12
16
20
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 2, Typical Output Characteristics (TJ = 150°C)
100 OPERATION
80
60
12V
0
0
4
8
12
16
20
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 1, Typical Output Characteristics (TJ = 25°C)
250µSec. Pulse Test
VGE = 15V
APT33GF120BR
60
IC, COLLECTOR CURRENT (AMPERES)
IC, COLLECTOR CURRENT (AMPERES)
60
20
IC = IC2
TJ = +25°C
16
VCE=240V
VCE=600V
12
VCE =960V
8
4
0
0
50
100
150
200
250
Qg, TOTAL GATE CHARGE (nC)
Figure 6, Gate Charges vs Gate-To-Emitter Voltage
D=0.5
0.1
0.2
0.05
0.1
0.05
0.01
0.005
t2
SINGLE PULSE
0.001
10 -5
t1
10-4
Duty Factor D = t1/t2
Peak TJ = PDM x ZθJC + TC
10-3
10 -2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 7, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
052-6206 Rev D
0.01
3-2003
Note:
0.02
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.5
APT33GF120BR
60
IC, COLLECTOR CURRENT (AMPERES)
VCE(SAT), COLLECTOR-TO-EMITTER
SATURATION VOLTAGE (VOLTS)
5.0
4.0
IC1
2.0
IC2
0.5 IC2
1.5
0.9
0.8
0.7
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
Figure 10, Breakdown Voltage vs Junction Temperature
20
IC1
1
IC2
0.5 IC2
VCC = 0.66 VCES
VGE = +15V
RG = 10 Ω
25
VCC = 0.66 VCES
VGE = +15V
TJ = +25°C
IC = IC2
12
Eoff
8
Eon
4
0
20
40
60
80
100
RG, GATE RESISTANCE (OHMS)
Figure 11, Typical Switching Energy Losses vs Gate Resistance
4
SWITCHING ENERGY LOSSES (mJ)
TOTAL SWITCHING ENERGY LOSSES (mJ)
50
75
100
125
150
TC, CASE TEMPERATURE (°C)
Figure 9, Maximum Collector Current vs Case Temperature
16
SWITCHING ENERGY LOSSES (mJ)
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
Figure 8, Typical VCE(SAT) Voltage vs Junction Temperature
1.2
1
20
0
1.0
1.1
40
0
VCC = 0.66 VCES
VGE = +15V
TJ = +125°C
RG = 10 Ω
3
2
Eoff
1
Eon
0
0.1
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
Figure 12, Typical Switching Energy Losses vs. Junction Temperature
0
10
20
30
40
IC, COLLECTOR CURRENT (AMPERES)
Figure 13, Typical Switching Energy Losses vs Collector Current
IC, COLLECTOR CURRENT (AMPERES)
052-6206 Rev D
3-2003
100
For Both:
Duty Cycle = 50%
TJ = +125°C
Tsink = +90°C
Gate drive as specified
Power dissapation = 83W
ILOAD = IRMS of fundamental
10
1
0.1
1.0
10
F, FREQUENCY (KHz)
Figure 14,Typical Load Current vs Frequency
100
1000
APT33GF120BR
VCHARGE
*DRIVER SAME TYPE AS D.U.T.
VCC = 0.66 VCES
Et s = E on + E off
A
A
90%
VC
B
10%
B
t d (on)
t d(off)
IC
VC
IC
100uH
90%
D.U.T.
VCE (SAT)
tr
VC
A
D.U.T.
DRIVER*
10%
IC
RG
V CLAMP
90%
10%
tf
E on
t=2us
E off
Figure 15, Switching Loss Test Circuit and Waveforms
2
VCE(off)
VGE(on)
V CC
90%
.5 VCES
RL =
I C2
2
D.U.T.
10%
1
From
Gate Drive
Circuitry
VCE(on)
VGE(off)
t d (on)
tr
t d(off)
RG
1
tf
Figure 16, Resistive Switching Time Test Circuit and Waveforms
T0-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
3-2003
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
052-6206 Rev D
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)