APT40GP60J 600V POWER MOS 7 IGBT ® E E The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. 27 2 T- C G SO C "UL Recognized" • Low Conduction Loss • 100 kHz operation @ 400V, 27A • Low Gate Charge • 200 kHz operation @ 400V, 17A • Ultrafast Tail Current shutoff • SSOA rated MAXIMUM RATINGS Symbol ISOTOP ® G E All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 86 I C2 Continuous Collector Current @ TC = 110°C 40 I CM Pulsed Collector Current SSOA PD TJ,TSTG TL UNIT APT40GP60J 1 Volts Amps 160 @ TC = 25°C 160A @ 600V Switching Safe Operating Area @ TJ = 150°C 284 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS MIN BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 25°C) 2.6 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 125°C) 2.4 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) 2 250 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA Rev A 5-2002 Characteristic / Test Conditions 050-7410 Symbol APT40GP60J DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Qge Qgc SSOA Total Gate Charge TYP Capacitance 4470 VGE = 0V, VCE = 25V 406 f = 1 MHz 25 Gate Charge VGE = 15V 6.8 123 VCE = 300V 28 I C = 40A 33 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Switching SOA MIN TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 160 A 15V, L = 100µH,VCE = 600V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff I C = 40A 42 4 Turn-on Switching Energy (Diode) 5 Eon1 56 µJ 295 18 VGE = 15V 74 I C = 40A 71 Current Fall Time Turn-off Switching Energy 613 Inductive Switching (125°C) VCC(Peak) = 400V Turn-off Delay Time 24 R G = 5Ω 4 Turn-on Switching Energy (Diode) ns 385 TJ = +25°C 6 Current Rise Time Turn-on Switching Energy 25 R G = 5Ω Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 18 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC(Peak) = 400V 357 TJ = +125°C 5 ns 815 6 µJ 519 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .44 RΘJC Junction to Case (DIODE) N/A Package Weight 29.2 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy. (See Figures 21, 23.) 050-7410 Rev A 5-2002 APT Reserves the right to change, without notice, the specifications and information contained herein. APT's devices are covered by one or more of the following U.S.patents: 4,895,810 5,256,583 5,045,903 4,748,103 5,089,434 5,283,202 5,182,234 5,231,474 5,019,522 5,434,095 5,262,336 5,528,058 TYPICAL PERFORMANCE CURVES TC=-55°C 90 70 60 50 40 TC=125°C 30 20 TC=25°C 40 30 100 80 60 40 TJ = 125°C 20 TJ = 25°C 0 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE IC= 80A 3 IC= 40A 2.5 IC= 20A 2 1.5 1 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 8 4 2 4 3.5 0.85 0.8 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 0.9 0 20 40 60 80 100 120 GATE CHARGE (nC) FIGURE 4, Gate Charge 140 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE IC= 80A 3 2.5 IC= 40A IC=20A 2 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 90 0.95 VCE=480V 6 1.15 1.0 VCE=300V 10 100 1.05 VCE=120V 12 1.2 1.10 IC = 40A TJ = 25°C 14 0 1 4 3.5 FIGURE 2, Output Characteristics (VGE = 10V) 16 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 TJ = -55°C TC=125°C 0 0.5 1 1.5 2 2.5 3 3.5 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) 120 TC=25°C 20 0 140 IC, COLLECTOR CURRENT (A) 50 0 250µs PULSE TEST <0.5 % DUTY CYCLE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 60 10 FIGURE 1, Output Characteristics(VGE = 15V) 160 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 70 10 0 0.5 1 1.5 2 2.5 3 3.5 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) TC=-55°C 80 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev A 5-2002 80 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7410 IC, COLLECTOR CURRENT (A) 90 IC, COLLECTOR CURRENT (A) VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE APT40GP60J 100 100 APT40GP60J 80 VGE= 10V 25 20 VGE= 15V 15 10 VCE = 400V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 5 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 30 0 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 70 VGE =15V,TJ=125°C 70 VGE =10V,TJ=125°C 60 50 VGE =15V,TJ=25°C 40 VGE =10V,TJ=25°C 30 20 10 VCE = 400V RG = 5Ω L = 100 µH 0 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 100 TJ = 25 or 125°C,VGE = 10V 90 60 RG =5Ω, L = 100µH, VCE = 400V TJ = 125°C, VGE = 10V or 15V 50 tf, FALL TIME (ns) tr, RISE TIME (ns) 80 40 30 20 TJ = 25 or 125°C,VGE = 15V 40 30 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 1800 2000 EOFF, TURN OFF ENERGY LOSS (µJ) VCE = 400V VGE = +15V RG = 5 Ω TJ =125°C, 15V TJ =125°C,10V 1500 TJ = 25°C, 10V 1000 500 TJ = 25°C, 15V TJ = 25°C, VGE = 10V or 15V 0 1600 VCE = 400V VGE = +15V RG = 5 Ω TJ = 125°C, VGE = 10V or 15V 1400 1200 1000 800 600 400 200 TJ = 25°C, VGE = 10V or 15V 0 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 4000 2500 Eon2 80A 3500 3000 2500 Eoff 80A 2000 1500 Eon2 40A 1000 Eoff 40A 500 0 Eon2 20A Eoff20A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (µJ) EON1, TURN ON ENERGY LOSS (µJ) SWITCHING ENERGY LOSSES (µJ) Rev A 5-2002 50 10 RG =5Ω, L = 100µH, VCE = 400V 0 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 050-7410 60 20 10 2500 70 VCE = 400V VGE = +15V RG = 5 Ω Eon2 80A 2000 1500 Eoff 80A 1000 500 Eon2 40A Eoff 40A Eon2 20A 0 -50 Eoff 20A -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT40GP60J 10,000 180 Cies 160 140 1,000 500 Coes 100 50 Cres 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 5,000 120 100 80 60 40 20 0 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.45 0.1 0.2 0.05 0.1 0.01 0.02 Note: 0.01 PDM 0.05 0.005 t1 SINGLE PULSE t2 Duty Factor D = t1/t2 Peak TJ = PDM x ZθJC + TC 0.001 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 350 100 Fmax = min(f max1 , f max 2 ) 50 TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5 Ω 0.05 t d (on) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 10 20 30 40 50 60 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Rev A 5-2002 10 f max1 = 050-7410 10-5 FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) D=0.5 APT40GP60J APT 40GP60B2D1 Gate Voltage T J = 125 C 10% 18V IC V CC td(on) V CE tr Collector Voltage 90% 5% 5% Collector Current A 10% D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST 90% Gate Voltage t d(off) *DRIVER SAME TYPE AS D.U.T. T J = 125 C A tf Collector Voltage V CE 90% IC 0 100uH Collector Current V CLAMP 10% B Switching Energy A D.U.T. DRIVER* Figure 23, Turn-off Switching Waveforms and Definitions Figure 24, EON1 Test Circuit SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter Collector 050-7410 Rev A 5-2002 30.1 (1.185) 30.3 (1.193) * Emitter terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) Gate * Emitter Dimensions in Millimeters and (Inches) APT's devices are covered by one or more of the following U.S.patents: 4,895,810 5,256,583 5,045,903 4,748,103 5,089,434 5,283,202 5,182,234 5,231,474 5,019,522 5,434,095 5,262,336 5,528,058