ETC APT40GP60J

APT40GP60J
600V
POWER MOS 7 IGBT
®
E
E
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
27
2
T-
C
G
SO
C
"UL Recognized"
• Low Conduction Loss
• 100 kHz operation @ 400V, 27A
• Low Gate Charge
• 200 kHz operation @ 400V, 17A
• Ultrafast Tail Current shutoff
• SSOA rated
MAXIMUM RATINGS
Symbol
ISOTOP ®
G
E
All Ratings: TC = 25°C unless otherwise specified.
Parameter
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current @ TC = 25°C
86
I C2
Continuous Collector Current @ TC = 110°C
40
I CM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
UNIT
APT40GP60J
1
Volts
Amps
160
@ TC = 25°C
160A @ 600V
Switching Safe Operating Area @ TJ = 150°C
284
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
MIN
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 25°C)
2.6
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 125°C)
2.4
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
2
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
Rev A 5-2002
Characteristic / Test Conditions
050-7410
Symbol
APT40GP60J
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Qgc
SSOA
Total Gate Charge
TYP
Capacitance
4470
VGE = 0V, VCE = 25V
406
f = 1 MHz
25
Gate Charge
VGE = 15V
6.8
123
VCE = 300V
28
I C = 40A
33
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Switching SOA
MIN
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
160
A
15V, L = 100µH,VCE = 600V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
I C = 40A
42
4
Turn-on Switching Energy (Diode) 5
Eon1
56
µJ
295
18
VGE = 15V
74
I C = 40A
71
Current Fall Time
Turn-off Switching Energy
613
Inductive Switching (125°C)
VCC(Peak) = 400V
Turn-off Delay Time
24
R G = 5Ω
4
Turn-on Switching Energy (Diode)
ns
385
TJ = +25°C
6
Current Rise Time
Turn-on Switching Energy
25
R G = 5Ω
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
18
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC(Peak) = 400V
357
TJ = +125°C
5
ns
815
6
µJ
519
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.44
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
29.2
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy. (See Figures 21, 23.)
050-7410
Rev A 5-2002
APT Reserves the right to change, without notice, the specifications and information contained herein.
APT's devices are covered by one or more of the following U.S.patents:
4,895,810
5,256,583
5,045,903
4,748,103
5,089,434
5,283,202
5,182,234
5,231,474
5,019,522
5,434,095
5,262,336
5,528,058
TYPICAL PERFORMANCE CURVES
TC=-55°C
90
70
60
50
40
TC=125°C
30
20
TC=25°C
40
30
100
80
60
40
TJ = 125°C
20
TJ = 25°C
0
2 3
4 5 6
7 8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC= 80A
3
IC= 40A
2.5
IC= 20A
2
1.5
1
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
8
4
2
4
3.5
0.85
0.8
-50
-25
0
25 50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.9
0
20
40
60
80 100 120
GATE CHARGE (nC)
FIGURE 4, Gate Charge
140
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC= 80A
3
2.5
IC= 40A
IC=20A
2
1.5
1
0.5
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
90
0.95
VCE=480V
6
1.15
1.0
VCE=300V
10
100
1.05
VCE=120V
12
1.2
1.10
IC = 40A
TJ = 25°C
14
0
1
4
3.5
FIGURE 2, Output Characteristics (VGE = 10V)
16
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
TJ = -55°C
TC=125°C
0 0.5
1
1.5
2
2.5
3
3.5
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
VGE, GATE-TO-EMITTER VOLTAGE (V)
120
TC=25°C
20
0
140
IC, COLLECTOR CURRENT (A)
50
0
250µs PULSE TEST
<0.5 % DUTY CYCLE
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
60
10
FIGURE 1, Output Characteristics(VGE = 15V)
160
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
70
10
0 0.5 1
1.5
2
2.5
3
3.5
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
TC=-55°C
80
80
70
60
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev A 5-2002
80
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7410
IC, COLLECTOR CURRENT (A)
90
IC, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT40GP60J
100
100
APT40GP60J
80
VGE= 10V
25
20
VGE= 15V
15
10
VCE = 400V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
30
0
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
70
VGE =15V,TJ=125°C
70
VGE =10V,TJ=125°C
60
50
VGE =15V,TJ=25°C
40
VGE =10V,TJ=25°C
30
20
10
VCE = 400V
RG = 5Ω
L = 100 µH
0
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
100
TJ = 25 or 125°C,VGE = 10V
90
60
RG =5Ω, L = 100µH, VCE = 400V
TJ = 125°C, VGE = 10V or 15V
50
tf, FALL TIME (ns)
tr, RISE TIME (ns)
80
40
30
20
TJ = 25 or 125°C,VGE = 15V
40
30
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1800
2000
EOFF, TURN OFF ENERGY LOSS (µJ)
VCE = 400V
VGE = +15V
RG = 5 Ω
TJ =125°C, 15V
TJ =125°C,10V
1500
TJ = 25°C, 10V
1000
500
TJ = 25°C, 15V
TJ = 25°C, VGE = 10V or 15V
0
1600
VCE = 400V
VGE = +15V
RG = 5 Ω
TJ = 125°C, VGE = 10V or 15V
1400
1200
1000
800
600
400
200
TJ = 25°C, VGE = 10V or 15V
0
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
4000
2500
Eon2 80A
3500
3000
2500
Eoff 80A
2000
1500
Eon2 40A
1000
Eoff 40A
500
0
Eon2 20A
Eoff20A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
SWITCHING ENERGY LOSSES (µJ)
EON1, TURN ON ENERGY LOSS (µJ)
SWITCHING ENERGY LOSSES (µJ)
Rev A 5-2002
50
10
RG =5Ω, L = 100µH, VCE = 400V
0
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
050-7410
60
20
10
2500
70
VCE = 400V
VGE = +15V
RG = 5 Ω
Eon2 80A
2000
1500
Eoff 80A
1000
500
Eon2 40A
Eoff 40A
Eon2 20A
0
-50
Eoff 20A
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT40GP60J
10,000
180
Cies
160
140
1,000
500
Coes
100
50
Cres
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
5,000
120
100
80
60
40
20
0
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.45
0.1
0.2
0.05
0.1
0.01
0.02
Note:
0.01
PDM
0.05
0.005
t1
SINGLE PULSE
t2
Duty Factor D = t1/t2
Peak TJ = PDM x ZθJC + TC
0.001
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
350
100
Fmax = min(f max1 , f max 2 )
50
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5 Ω
0.05
t d (on) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
10
20
30
40
50
60
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
Rev A 5-2002
10
f max1 =
050-7410
10-5
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
D=0.5
APT40GP60J
APT 40GP60B2D1
Gate Voltage
T J = 125 C
10%
18V
IC
V CC
td(on)
V CE
tr
Collector Voltage
90%
5%
5%
Collector Current
A
10%
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
90%
Gate Voltage
t d(off)
*DRIVER SAME TYPE AS D.U.T.
T J = 125 C
A
tf
Collector Voltage
V CE
90%
IC
0
100uH
Collector Current
V CLAMP
10%
B
Switching Energy
A
D.U.T.
DRIVER*
Figure 23, Turn-off Switching Waveforms and Definitions
Figure 24, EON1 Test Circuit
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter
Collector
050-7410
Rev A 5-2002
30.1 (1.185)
30.3 (1.193)
* Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
38.0 (1.496)
38.2 (1.504)
Gate
* Emitter
Dimensions in Millimeters and (Inches)
APT's devices are covered by one or more of the following U.S.patents:
4,895,810
5,256,583
5,045,903
4,748,103
5,089,434
5,283,202
5,182,234
5,231,474
5,019,522
5,434,095
5,262,336
5,528,058