6 – 20 GHz High-Gain Amplifier Technical Data HMMC-5620 Features • Wide-Frequency Range: 6 – 20 GHz • High Gain: 17 dB • Gain Flatness: ± 1.0 dB • Return Loss: Input -15 dB Output -15 dB • Single Bias Supply Operation • Low DC Power Dissipation: PDC ~ 0.5 Watts • Medium Power: 20 GHz: P-1dB: 12 dBm Psat: 13 dBm Description The HMMC-5620 is a wideband GaAs MMIC Amplifier designed for medium output power and high gain over the 6 to 20 GHz frequency range. Four MESFET cascade stages provide high gain, while the single bias supply offers ease of use. E-Beam lithography is used to produce gate lengths of ≈ 0.3 µm. The HMMC-5620 incorporates advanced MBE technology, Ti-Pt-Au gate metallization, silicon nitride passivation, and polyimide for scratch protection. 5965-5442E Chip Size: Chip Size Tolerance: Chip Thickness: Pad Dimensions: 1410 x 1010 µm (55.5 x 39.7 mils) ± 10 µm (± 0.4 mils) 127 ± 15 µm (5.0 ± 0.6 mils) 80 x 80 µm (2.95 x 2.95 mils), or larger Absolute Maximum Ratings[1] Symbol Parameters/Conditions VDD Positive Drain Voltage IDD Total Drain Current PDC Units Min. Max. V 7.5 mA 135 DC Power Dissipation watts 1.0 Pin CW Input Power dBm 20 Tch Operating Channel Temp. °C +160 Tcase Operating Case Temp. °C -55 TSTG Storage Temperature °C -65 Tmax Maximum Assembly Temp. (for 60 seconds maximum) °C +165 +300 Notes: 1. Operation in excess of any one of these conditions may result in permanent damage to this device. TA = 25°C except for Tch, TSTG, and Tmax. 6-70 HMMC-5620 DC Specifications/Physical Properties[1] Symbol IDD IDD θch-bs Parameters and Test Conditions Drain Current (VDD = +5.0 V) Drain Current (VDD = +7.0 V) Thermal Resistance (Tbackside = 25°C) Units mA mA °C/W Min. 70 Typ. 100 105 70 Max. 135 Note: 1. Measured in wafer form with Tchuck = 25°C. (Except θch-bs). HMMC-5620 RF Specifications/Physical Properties VDD = 5.0 V, IDD(Q) = 100 mA, Zin =Zo = 50 Ω[1] Symbol BW S 21 ∆S 21 RL in RL out S 12 P-1dB Psat H2 H3 NF Parameters and Test Conditions Guaranteed Bandwidth Small Signal Gain Small Signal Gain Flatness Input Return Loss Output Return Loss Reverse Isolation Output Power @ 1 dB Gain Compression Saturated Output Power Second Harmonic Power Level (6 < ƒo < 20) Po(ƒo) = 10 dBm Third Harmonic Power Level (6 < ƒo < 20) Po(ƒo) = 10 dBm Noise Figure Units GHz dB dB dB dB dB dBm dBm dBc Min. 6 15 Typ. 17 ± 1.0 -15 -15 -55 12 13 -30 dBc -40 dB 9.0 Note: 1. Small-signal data measured in wafer form with Tchuck = 25°C. Large-signal data measured on individual devices mounted in an HP83040 Series Modular Microcircuit Package at TA = 25°C. 6-71 Max. 20 21 ± 1.25 -10 -10 HMMC-5620 Applications The HMMC-5620 amplifier is designed for use as a general purpose wideband, high gain stage in communication systems and microwave instrumentation. It is ideally suited for broadband applications requiring high gain and excellent port matches over a 6 to 20 GHz frequency range. Both RF input and output ports are AC-coupled on chip. Biasing and Operation This amplifier is biased with a single positive drain supply (VDD). The recommended bias for the HMMC-5620 is VDD = 5.0 V, which results in IDD = 100 mA (Typ.). No other bias supplies or connections to the device are required for 6 to 20 GHz operation. See Figure 3 for assembly information. tion should be 64 ± 1 dB and 76␣ ± ␣ 8 msec, respectively. The bonding pad and chip backside metallization is gold. Assembly Techniques For more detailed information see HP application note #999 “GaAs MMIC Assembly and Handling Guidelines.” Solder die-attach using a fluxless AuSu solder preform is the recommended assembly method. Gold thermosonic wedge bonding with 0.7 or 1.0 mil diameter Au wire is recommended for D.C. bonds. For RF bonds, MWTC recommends low inductance mesh interconnections for best return loss performance. Tool force should be 22 ± 1 gram, stage temperature should be 150 ± 2°C, and ultrasonic power and dura- GaAs MMICs are ESD sensitive. Proper precautions should be used when handling these devices. Drain Bias FEEDBACK NTWK FEEDBACK NTWK FEEDBACK NTWK FEEDBACK NTWK RF Output MATCHING MATCHING RF Input MATCHING 5 MATCHING 5 MATCHING 5 5 GND GND GND GND GND GND GND Figure 1. HMMC-5620 Schematic. 6-72 GND VDD RF Input RF Output Chip ID No. 875 (VDD Pad) 910 (Center of VDD Pad) 1010 (±10) 350 350 Notes: All dimensions in microns. RF Pad Dim: 80 x 80 µm. VDD Pad Dim: 110 x 90 µm All other dimensions: ±5 µm (unless otherwise noted). Chip thickness: 127 ± 15 µm. 0 85 0 (RF Input Pad) 1325 (RF Output Pad) 1410 (±10) Figure 2. HMMC-5620 Bonding Pad Locations. 68 pF Chip Capacitor L ≥2 nH (1.0 mil Gold Wire Bond with length ≥100 mils) Gold Plated Shim Input and Output Thin Film Circuits with 50 ohm transmission lines. (2 places) VDD RF IN RF OUT 2.0 mil nom. gap Figure 3. HMMC-5620 Assembly Diagram. (For 6.0 – 20.0 GHz Operation) 6-73 HMMC-5620 Typical Performance –45 –50 –55 13 –60 –65 8 –70 –75 3 2 4 6 8 10 12 14 16 18 20 22 24 26.5 VDD = 5.0 V, IDD = 100 mA[1] –5 –10 –10 –15 –15 –20 –20 –25 –25 –30 –30 OUTPUT RETURN LOSS, S22 (dB) –40 18 –5 –35 INPUT RETURN LOSS, S11 (dB) VDD = 5.0 V, IDD = 100 mA[1] REVERSE ISOLATION, S12 (dB) SMALL-SIGNAL GAIN, S21 (dB) 23 –35 –35 2 4 6 8 10 12 14 16 18 20 22 24 26.5 FREQUENCY (GHz) FREQUENCY (GHz) Figure 4. Typical Gain and Reverse Isolation vs. Frequency. Figure 5. Typical Input and Output Return Loss vs. Frequency. Typical Scattering Parameters[1], (Tchuck = 25°C, VDD = 5.0 V, IDD = 100 mA, Zin = Zo = 50 Ω) Freq. GHz 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 26.5 dB -10.7 -13.5 -14.6 -15.8 -18.4 -20.9 -22.2 -21.9 -20.2 -18.4 -16.7 -15.8 -15.8 -16.4 -17.5 -17.7 -16.8 -16.1 -18.5 -19.9 -14.2 -11.6 -10.3 -9.6 -9.2 -9.1 S11 Mag. 0.292 0.212 0.186 0.162 0.120 0.090 0.078 0.080 0.097 0.120 0.146 0.161 0.163 0.151 0.134 0.130 0.145 0.156 0.119 0.101 0.195 0.263 0.306 0.330 0.347 0.349 Ang. -100.3 -117.5 -136.6 -168.9 157.5 123.0 83.1 41.3 6.6 -21.0 -46.4 -70.0 -90.0 -105.6 -115.4 -114.1 -118.4 -131.6 -143.8 -108.1 -107.7 -125.6 -142.2 -157.2 -169.9 -357.4 dB -46.1 -74.1 -63.1 -60.4 -66.5 -62.7 -61.3 -66.5 -68.1 -60.0 -58.3 -62.7 -59.3 -57.5 -57.1 -55.6 -62.3 -59.7 -52.5 -53.2 -59.3 -54.0 -75.8 -53.5 -59.0 -54.9 S21 Mag. 0.0049 0.0002 0.0007 0.0010 0.0005 0.0007 0.0009 0.0005 0.0004 0.0010 0.0012 0.0007 0.0011 0.0013 0.0014 0.0017 0.0008 0.0010 0.0024 0.0022 0.0011 0.0020 0.0002 0.0021 0.0011 0.0018 Ang. -174.7 114.0 -122.1 -161.8 162.7 -175.3 -178.0 -62.4 -159.3 -113.5 -112.2 -130.0 -161.1 173.9 -165.9 175.5 98.2 112.8 72.9 -7.1 -8.0 -54.4 -158.2 -165.8 -137.5 78.2 Note: 1. Data obtained from on-wafer measurements. 6-74 dB -6.2 3.5 13.0 16.0 16.7 16.3 16.0 16.0 16.1 16.3 16.6 17.0 17.3 17.4 17.5 17.3 17.0 16.7 16.0 15.3 10.7 5.4 0.3 -4.5 -9.0 -11.2 S12 Mag. 0.491 1.489 4.486 6.310 6.839 6.531 6.310 6.310 6.383 6.531 6.761 7.079 7.328 7.413 7.499 7.328 7.079 6.839 6.310 5.842 3.414 1.857 1.034 0.595 0.355 0.275 Ang. -52.2 -170.0 82.2 -26.5 -116.8 173.2 114.2 60.2 9.0 -40.7 -89.9 -139.4 170.1 118.6 66.0 12.3 -43.1 -101.9 -168.5 119.8 54.2 -0.4 -47.5 -90.5 -131.1 -511.3 dB -8.1 -10.1 -12.7 -21.7 -25.7 -22.1 -21.7 -22.5 -23.2 -23.4 -21.5 -19.1 -17.2 -16.0 -15.5 -15.5 -16.5 -17.7 -20.8 -20.4 -14.9 -12.0 -10.3 -9.0 -7.9 -7.4 S22 Mag. 0.395 0.311 0.232 0.082 0.052 0.079 0.082 0.075 0.070 0.067 0.084 0.111 0.137 0.159 0.168 0.167 0.149 0.130 0.091 0.096 0.179 0.250 0.306 0.353 0.402 0.426 Ang. -152.2 -171.5 136.5 61.5 -86.6 -131.4 -150.6 -156.7 -152.9 -143.0 -136.8 -133.7 -143.0 -152.8 -167.9 -179.7 162.9 145.2 93.0 -4.3 -63.6 -93.3 -110.4 -124.2 -134.3 -140.2 HMMC-5620 Typical Performance 17 VDD = 5.0 V, IDD (Q) = 100 mA –20 VDD = 5.0 V, IDD (Q) = 100 mA 17 VDD = 7.0 V, IDD (Q) = 105 mA HARMONICS (dBc) 13 11 9 P(–1 dB) P(–3 dB) P(–5 dB) 7 5 4 6 8 10 12 –35 –40 –45 –55 –60 –70 4 14 16 18 20 22 5 6 7 8 20 VDD = 5.0 V, IDD (Q) = 100 mA 18 16 16 14 14 12 12 10 10 8 8 6 6 –60 4 4 –65 2 2 –70 4 0 5 3rd Harmonic –50 –55 5 6 7 8 9 10 11 12 13 14 NOISE FIGURE (dB) 2nd Harmonic –45 FUNDAMENTAL FREQUENCY, ƒO (GHz) Figure 9. Typical Second and Third Harmonics vs. Fundamental Frequency at POUT = 10 dBm. 7 9 11 13 15 17 19 0 21 FREQUENCY (GHz) Figure 10. Typical Noise Figure Performance vs. Frequency. VDD = 5.0 V, IDD (@ TA = 25°C) = 100 mA SMALL-SIGNAL GAIN, S21 (dB) 0.035 dB/°C 22 0.027 dB/°C 0.036 dB/°C 20 18 16 14 9 P(–1 dB) P(–3 dB) P(–5 dB) –55°C –25°C 0°C +25°C +55°C +85°C +100°C +125°C 12 10 8 2 4 6 8 10 12 14 16 18 20 22 24 26.5 FREQUENCY (GHz) Figure 11. Typical Small-Signal Gain vs. Temperature. This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. In this data sheet the term typical refers to the 50th percentile performance. For additional information contact your local HP sales representative. 6-75 6 8 10 12 14 16 18 20 22 FREQUENCY (GHz) 20 18 –40 11 5 4 9 10 11 12 13 14 Figure 7. Typical Second and Third Harmonics vs. Fundamental Frequency at POUT = 10 dBm. –25 –35 13 7 FUNDAMENTAL FREQUENCY, ƒO (GHz) VDD = 7.0 V, IDD (Q) = 105 mA –30 15 –65 Figure 6. Typical Output Power vs. Frequency (with 5 V bias.) HARMONICS (dBc) 3rd Harmonic –50 FREQUENCY (GHz) –20 2nd Harmonic ASSOCIATED GAIN (dB) OUTPUT POWER (dBm) –30 OUTPUT POWER (dBm) –25 15 Figure 8. Typical Output Power vs. Frequency (with 7 V bias).