Holtek 32-bit Microcontroller with ARM® Cortex™-M3 Core HT32F1251/51B/52/53 Series Datasheet Revision: V1.10 Date: �������������� April 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Table of Contents 1 General Description................................................................................................. 6 2 Features.................................................................................................................... 7 Core........................................................................................................................................ 7 Flash Memory Controller........................................................................................................ 8 Reset Control Unit.................................................................................................................. 8 Clock Control Unit................................................................................................................... 8 Power Management................................................................................................................ 9 Analog to Digital Converter..................................................................................................... 9 Analog Operational Amplifier/Comparator.............................................................................. 9 I/O Ports................................................................................................................................ 10 PWM Generation and Capture Timers.................................................................................. 10 Watchdog Timer.................................................................................................................... 11 Real Time Clock.................................................................................................................... 11 Inter-integrated Circuit (I2C).................................................................................................. 12 Serial Peripheral Interface (SPI)........................................................................................... 12 Universal Synchronous Asynchronous Receiver Transmitter (USART)............................... 13 Debug Support...................................................................................................................... 13 Package and Operation Temperature................................................................................... 13 3 Overview................................................................................................................. 14 Device Information................................................................................................................ 14 Block Diagram...................................................................................................................... 15 Memory Map......................................................................................................................... 16 Clock Structure..................................................................................................................... 17 Pin Assignment..................................................................................................................... 18 4 Electrical Characteristics...................................................................................... 22 Absolute Maximum Ratings.................................................................................................. 22 DC Characteristics................................................................................................................ 22 On-Chip LDO Voltage Regulator Characteristics.................................................................. 22 Power Consumption............................................................................................................. 23 Reset and Supply Monitor Characteristics............................................................................ 23 External Clock Characteristics.............................................................................................. 24 Internal Clock Characteristics............................................................................................... 25 PLL Characteristics............................................................................................................... 26 Memory Characteristics........................................................................................................ 26 Rev. 1.10 2 of 35 April 13, 2012 Table of Contents On-chip Memory..................................................................................................................... 7 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 I/O Port Characteristics......................................................................................................... 26 ADC Characteristics............................................................................................................. 28 Operation Amplifier/Comparator Characteristics.................................................................. 29 GPTM Characteristics........................................................................................................... 29 I2C Characteristics................................................................................................................ 30 5 Package Information............................................................................................. 33 48-pin LQFP (7mmx7mm) Outline Dimensions.................................................................... 33 Rev. 1.10 3 of 35 April 13, 2012 Table of Contents SPI Characteristics............................................................................................................... 31 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 List of Tables Rev. 1.10 1. HT32F125x Series Features and Peripheral List...................................................................... 14 2. HT32F125x Pin Descriptions.................................................................................................... 20 3. Absolute Maximum Ratings....................................................................................................... 22 4. DC Operating Conditions.......................................................................................................... 22 5. LDO Characteristics.................................................................................................................. 22 6. Power Consumption Characteristics......................................................................................... 23 7. LVD/BOD Characteristics.......................................................................................................... 23 8. High Speed External Clock (HSE) Characteristics.................................................................... 24 9. Low Speed External Clock (LSE) Characteristics..................................................................... 24 10. High Speed Internal Clock (HSI) Characteristics.................................................................... 25 11. Low Speed Internal Clock (LSI) Characteristics...................................................................... 25 12. PLL Characteristics................................................................................................................. 26 13. Flash Memory Characteristics................................................................................................. 26 14. I/O Port Characteristics........................................................................................................... 26 15. ADC Characteristics................................................................................................................ 28 16. OPA/CMP Characteristics....................................................................................................... 29 17. GPTM Characteristics............................................................................................................. 29 18. I2C Characteristics................................................................................................................... 30 19. SPI Characteristics.................................................................................................................. 31 4 of 35 April 13, 2012 List of Tables Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 List of Figures Rev. 1.10 1. 2. 3. 4. 5. 6. 7. 8. 9. HT32F125x Block Diagram..................................................................................................... 15 HT32F125x Memory Map........................................................................................................ 16 HT32F125x Clock Structure Diagram...................................................................................... 17 HT32F1251B 48LQFP Pin Assignment................................................................................... 18 HT32F1251/52/53 48LQFP Pin Assignment........................................................................... 19 ADC Sampling Network Model................................................................................................ 28 I2C Timing Diagram.................................................................................................................. 30 SPI Timing Diagram – SPI Master Mode................................................................................. 31 SPI Timing Diagram – SPI Slave Mode and CPHA=1............................................................. 32 5 of 35 April 13, 2012 List of Figures Figure Figure Figure Figure Figure Figure Figure Figure Figure 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 1 General Description The Holtek HT32F125x series of devices are high performance, low power consumption 32-bit microcontrollers based on the ARM® Cortex™-M3 processor core. The Cortex™-M3 is a nextgeneration processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support. The above features make the HT32F125x device suitable for a wide range of applications, especially in areas such as white goods and application control, power monitor and alarm systems, consumer and handheld equipment, data logging applications and so on. Rev. 1.10 6 of 35 April 13, 2012 General Description The HT32F125x device operates at a frequency of up to 72MHz with a Flash accelerator to obtain maximum efficiency. It provides up to 32KB of embedded Flash memory for code/data storage and up to 8 KB of embedded SRAM memory for system operation and application program usage. A variety of peripherals, such as ADC, I2C, USART, SPI, SW-DP (Serial Wire Debug Port), etc., are also implemented in this device series. Several power saving modes provide the flexibility for maximum optimisation between wakeup latency and power consumption, an especially important consideration in low power applications. 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 2 Features Core ▀ Internal Bus Matrix connected with ICode bus, DCode bus, System bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP) ▀ Nested Vectored Interrupt Controller (NVIC) ▀ Flash Patch and Breakpoint (FPB) ▀ Data Watchpoint and Trace (DWT) ▀ Instrument Trace Macrocell (ITM) ▀ Memory Protection Unit (MPU) ▀ Serial Wire Debug Port (SW-DP) ▀ Embedded Trace Macrocell (ETM) ▀ Trace Port Interface Unit (TPIU) On-chip Memory ▀ 9 to 32KB on-chip Flash memory for instruction/data and option storage ▀ 2 to 8KB on-chip SRAM ▀ Supports several boot modes The ARM® Cortex™-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. The instruction code and data are both located in the same memory address space but in different address ranges. The maximum address range of the Cortex™-M3 is 4GB since it has a 32-bit bus address width. Additionally, a pre-defined memory map is provided by the Cortex™-M3 processor to reduce the software complexity of repeated implementation of different device vendors. However, some regions are used by the ARM® Cortex™-M3 system peripherals. Refer to the ARM® Cortex™-M3 Technical Reference Manual for more information. The Figure 2. HT32F125x Memory Map shows the memory map of the HT32F125x series of devices, including Code, SRAM, peripheral, and other pre-defined regions. Rev. 1.10 7 of 35 April 13, 2012 Features ® ▀ 32-bit ARM Cortex™-M3 processor core ▀ Up to 72MHz operation frequency ▀ 1.25 DMIPS/MHz (Dhrystone 2.1) ▀ Single-cycle multiplication and hardware division ▀ Integrated Nested Vectored Interrupt Controller (NVIC) ▀ 24-bit SysTick timer The Cortex™-M3 processor is a general-purpose 32-bit processor core especially suitable for products requiring high performance and low power consumption microcontrollers. It offers many new features such as a Thumb-2 instruction set, hardware divider, low latency interrupt respond time, atomic bit-banding access and multiple buses for simultaneous accesses. The Cortex™-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex™-M3: 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Flash Memory Controller Reset Control Unit ▀ Supply supervisor: ● Power On Reset (POR) ● Brown Out Detector (BOD) ● Programmable Low Voltage Detector (LVD) The Reset Control Unit (RSTCU) has three kinds of reset, the power on reset, system reset and APB unit reset. The power on reset, known as a cold reset, resets the full system during power up. A system reset resets the processor core and peripheral IP components with the exception of the SW-DP controller. The resets can be triggered by an external signal, internal events and the reset generators. Clock Control Unit ▀ External 4 to 16 MHz crystal oscillator ▀ External 32,768 Hz crystal oscillator ▀ Internal 8MHz RC oscillator trimmed to 1% accuracy at 3.3V operating voltage and 25°C operating temperature ▀ Internal 32kHz RC oscillator ▀ Integrated system clock PLL ▀ Independent clock gating bits for peripheral clock sources The Clock Control unit, CKCU, provides a range of oscillator and clock functions. These include a High Speed Internal RC oscillator (HSI), a High Speed External crystal oscillator (HSE), a Low Speed Internal RC oscillator (LSI), a Low Speed External crystal oscillator (LSE), a Phase Lock Loop (PLL), a HSE clock monitor, clock prescalers, clock multiplexers and clock gating circuitry. The clocks of the AHB, APB and CortexTM-M3 are derived from the system clock (CK_SYS) which can come from the HSI, HSE or PLL. The Watchdog Timer and Real Time Clock (RTC) use either the LSI or LSE as their clock source. The maximum operating frequency of the system core clock (CK_AHB) can be up to 72MHz. (NOTE: LSE is not supported by HT32F1251B). Rev. 1.10 8 of 35 April 13, 2012 Features ▀ Flash accelerator for maximum efficiency ▀ 32-bit word programming (ISP and IAP) ▀ Flash protection capability to prevent illegal access The Flash Memory Controller, FMC, provides all the necessary functions and pre-fetch buffer for the embedded on-chip Flash Memory. Since the access speed of the Flash Memory is slower than the CPU, a wide access interface with a pre-fetch buffer is provided for the Flash Memory in order to reduce the CPU waiting time which will cause CPU instruction execution delays. Flash Memory word program/page erase functions are also provided. 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Power Management Analog to Digital Converter ▀ 12-bit SAR ADC engine ▀ Up to 1 Msps conversion rate - 1 μs at 56MHz, 1.17μs at 72MHz ▀ 8 external analog input channels ▀ Supply voltage range: 2.7V ~ 3.6V ▀ Conversion range: VSSA ~ VDDA A 12-bit multi-channel ADC is integrated in the device. There are a total of 10 multiplexed channels, which include 8 external channels on which the external analog signals can be measured, and 2 internal channels. If the input voltage is required to remain within a specific threshold window, the Analog Watchdog function will monitor and detect the signal. An interrupt will then be generated to inform that the input voltage is higher or lower than the set thresholds. There are three conversion modes to convert an analog signal to digital data. The ADC can be operated in one shot, continuous and discontinuous conversion modes. Analog Operational Amplifier/Comparator ▀ 2 Operational Amplifiers or 2 Comparator functions which are software configurable ▀ Supply voltage range: 2.7V ~ 3.6V Two Operational Amplifiers/Comparators (OPA/CMP) are implemented within the devices. They can be configured either as Operational Amplifiers or as Analog Comparators. When configured as comparators, they are capable of asserting interrupts to the NVIC. Rev. 1.10 9 of 35 April 13, 2012 Features ▀ Single 3.3V power supply: 2.7V to 3.6V ▀ Integrated 1.8V LDO regulator for core and peripheral power supply ▀ VBAT battery power supply for RTC and backup registers ▀ Three power domains: 3.3V, 1.8V and Backup ▀ Four power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2, Power-Down The Power consumption can be regarded as one of the most important issues for many embedded system applications. Accordingly the Power Control Unit, PWRCU, in these devices provides many types of power saving modes such as Sleep, Deep-Sleep1, Deep-Sleep2 and Power-Down mode. These operating modes reduce the power consumption and allow the application to achieve the best trade-off between the conflicting demands of CPU operating time, speed and power consumption. (NOTE: HT32F1251B does not support V BAT battery power supply). 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 I/O Ports The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the AF input or output pins. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit (EXTI). PWM Generation and Capture Timers ▀ Two 16-bit General-Purpose Timers (GPTM) ▀ Up to 4CHs PWM compare output or input capture for each GPTM ▀ External trigger input T he General-P u r pose Timers, k now n as GPTM0 and GPTM1, consist of one 16 -bit up/down-counter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter-Reload Register (CRR) and several control/status registers. They can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as single pulse generation or PWM output. The GPTM supports an Encoder Interface using a decoder with two inputs. Rev. 1.10 10 of 35 April 13, 2012 Features ▀ Up to 32 GPIOs ▀ Port A and Port B are mapped as 16 external interrupts (EXTI) ▀ Almost all I/O pins are 5 V-tolerant except for pins shared with analog inputs There are up to 32 General Purpose I/O pins, (GPIO), named PA0 ~ PA15 and PB0 ~ PB15 for the device to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Watchdog Timer Real Time Clock ▀ 32-bit up-counter with a programmable prescaler ▀ Alarm function ▀ Interrupt and Wake-up event The Real Time Clock, RTC, circuitry includes the APB interface, a 32-bit up-counter, a control register, a prescaler, a compare register and a status register. Most of the RTC circuits are located in the Backup Domain except for the APB interface. The APB interface is located in the V DD18 domain. Therefore, it is necessary to be isolated from the ISO signal that comes from the power control unit when the V DD18 domain is powered off, i.e., when the device enters the Power-Down mode. The RTC counter is used as a wakeup timer to generate a system resume from the Power-Down mode. Rev. 1.10 11 of 35 April 13, 2012 Features ▀ 12-bit down counter with 3-bit prescaler ▀ Interrupt or reset event for the system ▀ Programmable watchdog timer window function ▀ Write protection function The Watchdog Timer is a hardware timing circuitry that can be used to detect system failures due to software malfunctions. It includes a 12-bit down-counting counter, a prescaler, a WDT counter value register, a WDT delta value register, interrupt related circuits, WDT operation control circuitry and the WDT protection mechanism. The Watchdog Timer can be operated in an interrupt mode or a reset mode. The Watchdog Timer will generate an interrupt or a reset when the counter counts down and reaches a zero value. If the software does not reload the counter value before the Watchdog Timer underflow occurs, an interrupt or a reset will be generated when the counter underflows. In addition, an interrupt or reset is also generated if the software reloads the counter when the counter value is greater than or equal to the WDT delta value. That means the counter must be reloaded within a limited timing window using a specific method. The Watchdog Timer counter can be stopped while the processor is in the debug mode. The register write protection function can be enabled to prevent it from changing the configuration of the Watchdog Timer unexpectedly. 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Inter-integrated Circuit (I2C) The SDA line which is connected to the whole I 2C bus is a bi-directional data line between the master and slave devices used for the transmission and reception of data. The I 2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. Serial Peripheral Interface (SPI) ▀ SPI interfaces with a frequency of up to 18 MHz ▀ Support both master and slave mode ▀ FIFO Depth: 8 levels ▀ Multi-master and multi-slave operation The Serial Peripheral Interface, SPI, provides an SPI protocol data transmit and receive function in both master and slave mode. The SPI interface uses 4 pins, among which are the serial data input and output lines MISO and MOSI, the clock line, SCK, and the slave select line, SEL. One SPI device acts as a master which controls the data flow using the SEL and SCK signals to indicate the start of the data communication and the data sampling rate. To receive a data byte, the streamed data bits are latched on a specific clock edge and stored in the data register or in the RX FIFO. Data transmission is carried in a similar way but with a reverse sequence. The mode fault detection provides a capability for multi-master applications. Rev. 1.10 12 of 35 April 13, 2012 Features ▀ Support both master and slave mode with a frequency of up to 400 kHz ▀ Provide arbitration function ▀ Supports 7-bit and 10-bit addressing mode and general call addressing The I2C Module is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line, SDA, and a serial clock line, SCL. The I2C module provides two data transfer rates: (1) 100 kHz in the Standard mode or (2) 400 kHz in the Fast mode. The SCL period generation register is used to setup different kinds of duty cycle implementation for the SCL pulse. 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Universal Synchronous Asynchronous Receiver Transmitter (USART) Software can detect a USART error status by reading the Line Status Register, LSR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events. The USART includes a programmable baud rate generator which is capable of dividing the CK_AHB to produce a clock for the USART transmitter and receiver. Debug Support ▀ ▀ ▀ ▀ Serial Wire Debug Port - SW-DP 6 instruction comparators and 2 literal comparators for hardware breakpoint or code / literal patch 4 comparators for hardware watchpoint 1-bit asynchronous trace - TRACESWO Package and Operation Temperature ▀ 48-pin LQFP package ▀ Operation temperature range: -40°C to +85°C Rev. 1.10 13 of 35 April 13, 2012 Features ▀ Operating frequency: up to 4.5MHz ▀ Supports both asynchronous and clocked synchronous serial communication modes ▀ IrDA SIR encoder and decoder ▀ RS485 mode with output enable control ▀ Full Modem function ▀ FIFO Depth: 16 x 9 bits for both receiver and transmitter The Universal Synchronous Asynchronous Receiver Transceiver, USART, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. The USART is used to translate data between parallel and serial interfaces, and is also commonly used for RS232 standard communication. The USART peripheral function supports five-types of interrupt including Line Status Interrupt, Transmitter FIFO Empty Interrupt, Receiver Threshold Level Reaching Interrupt, Time Out Interrupt and MODEM Status Interrupt. The USART module includes a 16-byte transmitter FIFO, (TX_FIFO) and a 16-byte receiver FIFO (RX_FIFO). 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 3 Overview Device Information Most features are common to all devices while the main features distinguishing them are Flash memory and SRAM memory capacities. Peripherals HT32F1252 HT32F1251 HT32F1251B Main Flash (KB) 31 16 8 8 Option Bytes Flash (KB) 1 1 1 1 SRAM (KB) 8 4 2 2 Timers Communication Rev. 1.10 HT32F1253 GPTM 2 RTC 1 WDT 1 USART 1 SPI 1 I2C 1 GPIO 32 EXTI 16 30 12-bit ADC Number of channels 1 8 Channels OPA/Comparator 2 CPU frequency Up to 72 MHz Operating voltage 2.7 V ~ 3.6 V Operating temperature -40 ℃ ~ +85 ℃ Package LQFP48 14 of 35 April 13, 2012 Overview Table 1. HT32F125x Series Features and Peripheral List 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Block Diagram SWDIO SWCLK TR�CESWO �F BOOT0 BOOT1 �F TPIU �F SW-DP 1.8 V DCode NVIC System VLDOIN VSSLDO HSI 8 MHz HSE XT�LIN XT�LOUT I�C_SD� I�C_SCL 4 ~ 16 MHz BOD LVD �HB to �PB B�idge Powe�ed by �.� V I�C SPI WDT 1�-bit S�R �DC �DC GPTM0 �na�og OP�/CMP OP�/CMP GPTM1 Powe�ed by VDD� GPIO� GT0_CH0 �F ... US�RT Powe� cont�o� �F GT0_CH� GT0_ETI GT1_CH0 ... �F �F GT1_CH� GT1_ETI �PB1 �PB0 RTC �F VDD� VSS� SR�M 1.8 V �F Bus Mat�ix SR�M Cont�o��e� S�ave VLDOOUT LDO �F Inte��u�t �equest S�ave �F ... �DC_IN7 CN0� CP0 �OUT0 CN1� CP1 �OUT1 CKCU/RSTCU Cont�o� Registe�s �F SPI_MOSI SPI_MISO SPI_SCK SPI_SEL �DC_IN0 VDD18 �HB Pe�i�he�a�s S�ave UR_TX� UR_RX UR_DCD UR_DSR UR_DTR UR_RI UR_RTS/TXE UR_CTS/SCK fMax: 144 MHz Powe�ed by 1.8 V FMC Cont�o� Registe�s Maste� PLL F�ash Memo�y C�ock and �eset cont�o� fMax: 7� MHz F�ash Memo�y Cont�o��e� RTCOUT PWRSW P� [15:0] VLDOIN PWRCU �FIO PORB LSI VB�K �.� V EXTI Cont�o� signa�: ��te�nate function: �F �� kHz LSE BREG W�KEUP ���768 Hz nRST Powe�ed by VB�K Powe�ed by 1.8 V �F Powe� su���y: Bus: VB�T VB�K GPIOB PB [15:0] �F NOTE: HT32F1251B does not include the VBAT, XTAL32KIN and XTAL32KOUT pins. XT�L��KIN XT�L��KOUT Figure 1. HT32F125x Block Diagram Rev. 1.10 15 of 35 April 13, 2012 Overview ICode Co�texTM-M� P�ocesso� POR 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Memory Map 0xFFFF_FFFF Reserved 0xE010_0000 0x4010_0000 0x4008_A000 Reserved 0x4008_8000 0x4400_0000 APB/AHB bit band alias 0x4008_2000 32 MB 0x4008_0000 0x4200_0000 Peripherals 0x4010_0000 0x4008_0000 0x4000_0000 0x4007_0000 Reserved AHB peripherals 512 KB APB peripherals 512 KB 0x2000_2000 0x2000_1000 0x4006_8000 0x2000_0000 0x1FF0_0400 0x1FF0_0000 0x1F00_0800 0x1F00_0000 Code SRAM bit band alias 256 KB 4 KB on-chip SRAM 2 KB on-chip SRAM 2 KB on-chip SRAM HT32F1253 HT32F1252 HT32F1251(B) Reserved Option Bytes Flash 1 KB 8 KB on-chip Flash 0x4001_C000 0x4001_1000 0x4001_0000 0x4000_5000 HT32F1253 8 KB 16 KB 31 KB 0x0000_0000 0x4002_2000 0x4001_8000 2 KB 15 KB on-chip Flash 8 KB on-chip Flash 0x4002_3000 0x4001_9000 0x0000_7C00 0x0000_2000 0x4002_4000 0x4001_A000 Reserved 0x0000_4000 0x4002_5000 0x4001_B000 Reserved Boot Loader 0x4004_9000 0x4004_8000 Reserved 2 KB 4 KB 8 KB 0x2000_0800 0x4006_B000 0x4006_9000 0x2204_0000 SRAM 0x4006_E000 0x4006_A000 Reserved 0x2200_0000 0x4006_F000 HT32F1252 HT32F1251(B) 0x4000_4000 0x4000_1000 0x4000_0000 Reserved CKCU/RSTCU Reserved FMC Reserved GPTM1 GPTM0 Reserved RTC/PWRCU Reserved WDT Reserved I2C Reserved EXTI Reserved AFIO Reserved GPIO B GPIO A Reserved OPA/CMP Reserved ADC Reserved SPI Reserved USART APB Peripherals NOTES: 1. For HT32F1251(B), the Flash memory space at 0x0000_2000 to 0x0000_7BFF and the SRAM memory space at 0x2000_0800 to 0x2000_1FFF are reserved. 2. For HT32F1252, the Flash memory space at 0x0000_4000 to 0x0000_7BFF and the SRAM memory space at 0x2000_1000 to 0x2000_1FFF are reserved. Figure 2. HT32F125x Memory Map Rev. 1.10 16 of 35 April 13, 2012 Overview 0xE000_0000 AHB Peripherals Private peripheral bus 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Clock Structure Prescaler ÷1, 2 PLLSRC 8 MHz HSI RC PLLEN PLL 0 CK_PLL 4-16 MHz HSE XTAL fCK_SYS,max = 144MHz 0x CK_HSI HSEEN 11 CK_HSE CK_SYS AHB Prescaler ÷ 1,2,4,8 fCK_AHB,max = 72MHz CK_AHB 1 0 HCLKF ( to Flash) CK_WDT CM3EN FMCEN CK_LSI WDTEN RTCSRC 1 0 SRAMEN CK_RTC 14 CKOUTSRC[2:0] OPA0EN 14 WDTEN (APB peripherals clock gating) RTCEN 000 CK_PLL/16 001 010 CK_AHB/16 CK_SYS/16 011 CK_HSE/16 100 CK_HSI/16 101 CK_LSE 110 CK_LSI HCLKS ( to SRAM) CM3EN LSIEN CKOUT HCLKC ( to Cortex-M3) CM3EN (control by HW) WDTSRC LSEEN 32 kHz LSI RC FCLK ( free running clock) 10 Clock Monitor 32.768 kHz CK_LSE LSE OSC STCLK (to SysTick) ÷8 SW[1:0] ADC Prescaler ÷ 1,2,4,6,8... PCLK ( to OPA, AFIO GPIO Port, ADC, SPI, USART, I2C, GPTIM, EXTI, RTC, WDT) CK_ADC ADCEN Legend: HSE = High Speed External clock HSI = High Speed Internal clock LSE = Low Speed External clock LSI = Low Speed Internal clock NOTES: 1. Control bits LSIEN & LSEEN are located at RTC Control Register (RTCCR). 2. HT32F1251B does not include the VBAT, XTAL32KIN and XTAL32KOUT pins. Figure 3. HT32F125x Clock Structure Diagram Rev. 1.10 17 of 35 April 13, 2012 Overview f CK_PLL,max = 144MHz 1 HSIEN CK_USART UREN 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Pin Assignment AF3 GT1_CH0 AF2 - AF1 CN0 CP0 AOUT0 CN1 CP1 AOUT1 Overview UR_RTS /TXE - GT1_CH2 - GT1_CH1 GT1_CH3 - 42 41 40 39 38 33V 33V 33V 33V 33V AF0 (Default) 43 33V VDD18 PB2 44 P33 PB3 45 P33 PB4 46 AP PB5 47 AP PB6 48 PB7 N.C. VDD33_1 AF0 (Default) GT1_ETI GT0_ET1 UR_CTS /SCK AF1 VSS33_1 AF2 VDDA AF3 VSSA_1 Holtek HT32F1251B LQFP48 AF0 (Default) 37 P18 AF1 AF2 AF3 - VSSA_2 1 AP 33V 36 XTALOUT PB1 - GT0_Ch3 GT1_ETI ADC_IN0 PA0 2 33V 33V 35 XTALIN PB0 - - GT0_CH2 - ADC_IN1 PA1 3 33V 5VT 34 PB15 SPI_MOSI UR_RI GT1_CH0 GT0_CH1 UR_DCD ADC_IN2 PA2 4 33V 5VT 33 PB14 SPI_MISO UR_DTR GT1_CH1 GT0_CH0 UR_DSR ADC_IN3 PA3 5 33V 5VT 32 PB13 SPI_SCK UR_DSR GT1_CH2 SPI_MOSI UR_DTR ADC_IN4 PA4 6 33V 5VT 31 PB12 SPI_SEL UR_DCD GT1_CH3 UR_RI ADC_IN5 PA5 7 33V P33 30 VSS33_3 ADC_IN6 PA6 8 33V P33 29 VSS33_2 ADC_IN7 PA7 9 33V - PA8 10 5VT 11 5VT 12 5VT SPI_MISO SPI_SCK SPI_SEL - UR_RTS /TXE UR_CTS /SCK UR_RX - UR_TX - - - - PA9BOOT0 PA10BOOT1 AP 3.3 V Analog Power Pad P18 1.8 V Power Pad 33V 3.3 V I/O Pad 5VT 5 V Tolerance I/O Pad P33 28 VDD33_2 5VT 5VT High Current Output 5 V Tolerance I/O Pad 27 TRACE SWO PA15 - GT0_CH0 5VT 26 SWCLK PA14 - GT0_CH1 5VT 25 SWDIO PA13 - GT0_CH2 PA12 AF0 (Default) I2C_SDA AF1 - - AF2 GT0_CH3 - - AF3 24 - 23 CKOUT 22 I2C_SCL 21 PB11 20 PA11 19 GT0_ETI nRST 18 5VT - 17 5VT PB10WAKEUP 16 5VT N.C. 15 5VT RTCOUT 14 N.C. 5VT N.C. P33 VSSLDO VLDOOUT P33 N.C. 13 3.3 V Digital Power Pad VLDOIN P18 P33 Figure 4. HT32F1251B 48LQFP Pin Assignment Rev. 1.10 18 of 35 April 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 AF3 GT1_CH0 GT1_CH1 AF2 - - AF0 (Default) VDD18 PB2 N.C. PB3 Overview AF1 CN0 CP0 PB4 AF3 PB1 - - 36 XTALOUT 33V 35 XTALIN PB0 - - 5VT 34 PB15 SPI_MOSI UR_RI GT1_CH0 5VT 33 PB14 SPI_MISO UR_DTR GT1_CH1 5VT 32 PB13 SPI_SCK UR_DSR GT1_CH2 5VT 31 PB12 SPI_SEL UR_DCD GT1_CH3 P33 30 VSS33_3 P33 29 VSS33_2 GT0_CH1 UR_DCD ADC_IN2 PA2 4 33V GT0_CH0 UR_DSR ADC_IN3 PA3 5 33V SPI_MOSI UR_DTR ADC_IN4 PA4 6 33V UR_RI ADC_IN5 PA5 7 33V ADC_IN6 PA6 8 33V ADC_IN7 PA7 9 33V PA8 10 5VT 11 5VT 12 5VT - AF2 33V 33V - AF1 AP 3 - AF0 (Default) 1 2 - 37 P18 VSSA_2 PA1 UR_TX AOUT0 38 33V PA0 - GT1_CH2 39 33V ADC_IN1 - UR_RTS /TXE 40 33V PB5 41 33V ADC_IN0 UR_RX CN1 42 33V - - - 43 33V GT1_ETI SPI_SEL GT1_CH3 44 P33 PB6 45 P33 PB7 46 AP GT0_Ch3 SPI_SCK CP1 AOUT1 47 AP GT0_CH2 UR_RTS /TXE UR_CTS /SCK - 48 33V SPI_MISO VDD33_1 AF0 (Default) GT1_ETI GT0_ET1 UR_CTS /SCK AF1 VSS33_1 AF2 VDDA AF3 VSSA_1 Holtek HT32F1251/52/53 LQFP48 PA9BOOT0 PA10BOOT1 AP 3.3 V Analog Power Pad P18 1.8 V Power Pad 33V 3.3 V I/O Pad 5VT 5 V Tolerance I/O Pad P33 28 VDD33_2 High Current Output 5 V Tolerance I/O Pad 5VT 5VT 27 TRACE SWO PA15 - GT0_CH0 5VT 26 SWCLK PA14 - GT0_CH1 5VT 25 SWDIO PA13 - GT0_CH2 P33 33V 33V 5VT 5VT 5VT 5VT 14 15 16 17 18 19 20 21 22 23 24 nRST VBAT PB11 PA11 PA12 AF0 (Default) PB10WAKEUP CKOUT I2C_SCL I2C_SDA AF1 - - - - - - AF2 - GT0_ETI GT0_CH3 - - AF3 - PB8 PB9 RTCOUT 5VT XTAL32K OUT XTAL32K IN P33 VSSLDO VLDOOUT P33 N.C. 13 3.3 V Digital Power Pad VLDOIN P18 P33 Figure 5. HT32F1251/52/53 48LQFP Pin Assignment Rev. 1.10 19 of 35 April 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Table 2. HT32F125x Pin Descriptions Pin Name Pins Type 48 LQFP (Note1) IO Level (Note2) Description Default function (AF0) AF1 AF2 AF3 VSSA_2 1 P Ground reference for ADC and OPA/Comparator PA0 2 I/O GPIO PA0 ADC_IN0 PA1 3 I/O GPIO PA1 ADC_IN1 PA2 4 I/O GPIO PA2 ADC_IN2 UR_DCD GT0_CH1 PA3 5 I/O GPIO PA3 ADC_IN3 UR_DSR GT0_CH0 PA4 6 I/O GPIO PA4 ADC_IN4 UR_DTR SPI_MOSI PA5 7 I/O GPIO PA5 ADC_IN5 UR_RI SPI_MISO PA6 8 I/O GPIO PA6 ADC_IN6 UR_RTS/TXE SPI_SCK PA7 9 I/O GPIO PA7 ADC_IN7 UR_CTS/SCK SPI_SEL PA8 10 I/O 5V-T GPIO PA8 UR_RX PA9 11 I/O 5V-T GPIO PA9-BOOT0 UR_TX PA10 12 I/O 5V-T GPIO PA10-BOOT1 VLDOOUT 13 P LDO 1.8 V output. Please put a 10μF capacitor to GND in those pins as close as possible. N.C 14 VLDOIN 15 P LDO 3.3 V power source, also connected to the power switch of the backup domain. VSSLDO 16 P LDO ground reference 17 I (Backup 5V-T domain) External reset pin and external wakeup pin in Power-Down mode VBAT(note3) 18 P VDD 3.3 V for backup domain PB8(note3) 19 I/O (Backup domain) XTAL32KIN PB8 PB9(note3) 20 I/O (Backup domain) XTAL32KOUT PB9 PB10 21 I/O (Backup 5V-T domain) RTCOUT PB10WAKEUP GT0_ETI PB11 22 I/O 5V-T GPIO PB11 CKOUT GT0_CH3 PA11 23 I/O 5V-T GPIO PA11 I2C_SCL PA12 24 I/O 5V-T GPIO PA12 I2C_SDA PA13 25 I/O 5V-T SWDIO PA13 GT0_CH2 PA14 26 I/O 5V-T SWCLK PA14 GT0_CH1 PA15 27 I/O 5V-T TRACESWO PA15 GT0_CH0 VDD33_2 28 P 3.3 V voltage for digital I/O VSS33_2 29 P Ground reference for digital I/O VSS33_3 30 P PB12 31 I/O Rev. 1.10 GT0_CH3 GT0_CH2 Ground reference for digital core 5V-T GPIO PB12 20 of 35 SPI_SEL UR_DCD GT1_CH3 April 13, 2012 Overview nRST GT1_ETI 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Pin Name Pins Type 48 LQFP (Note1) IO Level (Note2) Description Default function (AF0) AF1 AF2 AF3 32 I/O 5V-T GPIO PB13 SPI_SCK UR_DSR GT1_CH2 PB14 33 I/O 5V-T GPIO PB14 SPI_MISO UR_DTR GT1_CH1 PB15 34 I/O 5V-T GPIO PB15 SPI_MOSI UR_RI GT1_CH0 PB0 35 I/O XTALIN PB0 PB1 36 I/O XTALOUT PB1 VDD18 37 P 1.8 V voltage for core N.C 38 PB2 39 I/O GPIO PB2 CN0 GT1_CH0 PB3 40 I/O GPIO PB3 CP0 GT1_CH1 PB4 41 I/O GPIO PB4 AOUT0 PB5 42 I/O GPIO PB5 CN1 GT1_CH3 PB6 43 I/O GPIO PB6 CP1 GT1_ETI PB7 44 I/O GPIO PB7 AOUT1 VDD33_1 45 P 3.3 V voltage for digital I/O VSS33_1 46 P Ground reference for digital I/O VDDA 47 P 3.3 V analog voltage for ADC and OPA/Comparator VSSA_1 48 P Ground reference for ADC and OPA/Comparator Overview PB13 UR_RTS/TXE UR_CTS/SCK GT1_CH2 GT0_ETI NOTES: 1. I = input, O = output, P = power supply. 2. 5V-T = 5V tolerant. 3. HT32F1251B does not include the VBAT, XTAL32KIN and XTAL32KOUT pins. 4. The GPIOs are in AF0 state after VDD18 power on reset (POR) except the RTCOUT pin of Backup Domain I/O. The RTCOUT pin is reset by the Backup Domain power-on-reset (PORB) or Backup Domain software reset (BAK_RST bit in BAK_CR register). 5. The backup domain of I/O pins has driving current capability limitation (< 1mA @ VBAT = 3.3V). Rev. 1.10 21 of 35 April 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 4 Electrical Characteristics Absolute Maximum Ratings Table 3. Absolute Maximum Ratings Symbol Parameter Min Max Unit VDD33 External main supply voltage VSS - 0.3 VSS + 3.6 V VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.6 V VBAT External battery supply voltage VSS - 0.3 VSS + 3.6 V VLDOIN External LDO supply voltage VSS - 0.3 VSS + 3.6 V Input voltage on 5V-tolerant I/O VSS - 0.3 VSS + 5.5 V Input voltage on other I/O VSS - 0.3 VDD33 + 0.3 V VIN TA Ambient operating temperature range -40 +85 °C TSTG Storage temperature range -55 +150 °C TJ Maximum junction temperature — 125 °C PD Total power dissipation — 500 mW VESD Electrostatic discharge voltage (human body mode) -4000 +4000 V DC Characteristics Table 4. DC Operating Conditions Symbol TA = 25°C, unless otherwise specified. Parameter Conditions Min Typ Max Unit VDD33 Operating voltage of I/O — 2.7 3.3 3.6 V VDDA Analog operating voltage — 2.7 3.3 3.6 V VBAT Operating voltage of Battery supply — 2.7 3.3 3.6 V VLDOIN LDO operating voltage — 2.7 3.3 3.6 V VDD18 Operating voltage of core power — 1.62 1.8 1.98 V On-Chip LDO Voltage Regulator Characteristics Table 5. LDO Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit VLDOOUT Internal regulator output voltage VLDOIN = 3.3V Regulator input 1.71 1.8 1.89 V IDD18 Output current VLDOIN = 2.4V Regulator input — — 200 mA CLDO The capacitor value is External filter capacitor value for dependent on the core power internal core power supply current consumption 2.2 — 10 μF Rev. 1.10 22 of 35 April 13, 2012 Electrical Characteristics The following table shows the absolute maximum ratings of the device. These are stress ratings only. Stresses beyond absolute maximum ratings may cause permanent damage to the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Power Consumption Table 6. Power Consumption Characteristics Symbol Parameter Min Typ VDD33 = VBAT = 3.3V, HSE = 8MHz, PLL = 144MHz, fHCLK = 72MHz, fPCLK = 72MHz, All peripherals enabled — 47 — mA VDD33 = VBAT = 3.3V, HSE = 8MHz, PLL = 144MHz, fHCLK = 72MHz, fPCLK = 72MHz, All peripherals disabled — 28 — mA VDD = VBAT = 3.3V, HSE = 8MHz, PLL = 144MHz, fHCLK = 0MHz, fPCLK = 72MHz, All peripherals enabled — 30 — mA VDD33 = VBAT = 3.3V, HSE = 8MHz, PLL = 144MHz, fHCLK = 0MHz, fPCLK = 72MHz, All peripherals disabled — 7 — mA Supply current (Deep-Sleep1 mode) VDD33 = VBAT = 3.3V, All clock off (HSE/PLL/fHCLK), LDO in low power mode, LSI on, RTC on — 66 — μA Supply current (Deep-Sleep2 mode) VDD33 = VBAT = 3.3V, All clock off (HSE/PLL/fHCLK), LDO off (DMOS on), LSI on, RTC on — 11 — μA VDD33 = VBAT = 3.3V, LDO off, LSE on, LSI off, RTC on — 4.2 — μA VDD33 = VBAT = 3.3V, LDO off, LSE on, LSI off, RTC off — 4.1 — μA VDD33 = VBAT = 3.3V, LDO off, LSE off, LSI on, RTC on — 4.3 — μA VDD33 = VBAT = 3.3V, LDO off, LSE off, LSI on, RTC off — 4.2 — μA VDD33 not present, VBAT = 3.3V, LDO off, LSE off, LSI on, RTC on — 4 — μA — 3.9 — μA Supply current (Sleep mode) Supply current (Power-Down mode) Battery supply current (PowerVDD33 not present, VBAT = 3.3V, LDO off, LSE off, Down mode) LSI on, RTC off IBAT Max Unit NOTES: 1. HSE is the high speed external oscillator while HSI is the 8MHz high speed internal oscillator. 2. LSE is the low speed external oscillator while LSI is the 32kHz low speed internal oscillator. 3. RTC means real time clock. 4. Code = while (1) { NOP x n } executed in Flash (n > 200). Reset and Supply Monitor Characteristics Table 7. LVD/BOD Characteristics Symbol VBOD VLVD VPOR TA = 25°C, unless otherwise specified. Parameter Voltage of Brown Out Detector Voltage of Low Voltage Detector Voltage of Power On Reset Conditions — Min Typ Max Unit — 2.5 — V LVDS (Note1) = ‘00’ — 2.7 — V LVDS (Note1) = ‘01’ — 2.8 — V LVDS (Note1) = ‘10’ — 2.9 — V LVDS — 3.0 — V — 1.36 — V (Note1) = ‘11’ — NOTE: LVDS field is in PWRCU LVDCSR register Rev. 1.10 23 of 35 April 13, 2012 Electrical Characteristics Conditions Supply current (Run mode) IDD TA = 25°C, unless otherwise specified. 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 External Clock Characteristics Table 8. High Speed External Clock (HSE) Characteristics Symbol Parameter Conditions TA = 25°C, unless otherwise specified. Min Typ Max Unit 4 — 16 MHz High Speed External oscillator frequency (HSE) CHSE Recommended load capacitance on XTALIN and XTALOUT — TBD — pF RFHSE Recommended external feedback resistor between XTALIN and XTALOUT — 1.0 — MΩ DHSE HSE Oscillator Duty cycle 40 — 60 % IDDHSE HSE Oscillator Operating Current VDD33 = 3.3V, TA = 25°C — 0.96 — mA ISTBHSE HSE Oscillator Standby current VDD33 = 3.3V, TA = 25°C — — 0.1 μA tSUHSE HSE Oscillator Startup time VDD33 = 3.3V, TA = 25°C — — 4 ms VDD33 = 3.3V Table 9. Low Speed External Clock (LSE) Characteristics Symbol Parameter Conditions TA = 25°C, unless otherwise specified. Min Typ Max Unit — 32.768 — kHz fLSE Low Speed External oscillator frequency (LSE) CLSE Recommended load capacitance on — XTAL32KIN and XTAL32KOUT pins — TBD — pF RFLSE Recommended external feedback resistor between XTAL32KIN and XTAL32KOUT pins — — 10 — MΩ DLSE LSE Oscillator Duty cycle — 40 — 60 % IDDLSE LSE Oscillator Operating Current VDD33 = VBAT = 3.3V, LSESM = 0 (Normal startup mode) — 1.7 — μA ISTBLSE LSE Oscillator Standby current VDD33 = VBAT = 3.3V, LSESM = 1 (Fast startup mode) — 3 8 μA tSULSE LSE Oscillator Startup time VDD33 = VBAT = 3.3V, LSESM = 1 (Fast startup mode) — 200 — ms Rev. 1.10 VDD33 = VBAT = 3.3V 24 of 35 April 13, 2012 Electrical Characteristics fHSE 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Internal Clock Characteristics Table 10. High Speed Internal Clock (HSI) Characteristics Symbol Parameter Conditions TA = 25°C, unless otherwise specified. Min Typ Max Unit TBD 8 TBD MHz High Speed Internal Oscillator VDD33 = 3.3V, Frequency (HSI ) TA = -40°C ~ +85°C ACCHSI HSI Oscillator Frequency accuracy Factory-trimmed, VDD33 = 3.3V, TA = 25°C -1 — +1 % DHSI HSI Oscillator Duty cycle VDD33 = 3.3V, fHSI = 8MHz 35 — 65 % IDDHSI HSI Oscillator Operating Current VDD33 = 3.3V, fHSI = 8MHz — 0.92 — mA tSUHSI HSI Oscillator Startup time VDD33 = 3.3V, fHSI = 8MHz, HSIRCBL = 0 (HSI Ready Counter Bits Length 7 Bits ) — 17 — μs NOTE: HSIRCBL field is in PWRCU HSIRCR register Table 11. Low Speed Internal Clock (LSI) Characteristics Symbol Min Typ Max Unit fLSI Low Speed Internal Oscillator VDD33 = VBAT = 3.3V, Frequency(LSI) TA = -40°C ~ +85°C 25 32 43 kHz IDDLSI LSI Oscillator Operating Current VDD33 = VBAT = 3.3V, TA = 25°C — 1.0 2 μA tSULSI LSI Oscillator Startup time VDD33 = VBAT = 3.3V, TA = 25°C — 35 — ms Rev. 1.10 Parameter Conditions TA = 25°C, unless otherwise specified. 25 of 35 April 13, 2012 Electrical Characteristics fHSI 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 PLL Characteristics Table 12. PLL Characteristics Symbol TA = 25°C, unless otherwise specified. Parameter Conditions Min Typ Max Unit 4 — 16 MHz PLL input clock frequency PLLVDD18 = 1.8V fPLL PLL output clock frequency PLLVDD18 = 1.8V 8 — 144 MHz tLOCK PLL lock time PLLVDD18 = 1.8V — TBD — ms Memory Characteristics Table 13. Flash Memory Characteristics Symbol TA = 25°C, unless otherwise specified. Parameter Conditions Min Typ Max Unit 1 — — kcycles NENDU Number of guaranteed VDD18 =1.8V, program /erase cycles before TA= -40°C ~ +85°C failure. (Endurance) TRET Data retention time TA = 25°C 100 — — Years tPROG Word programming time VDD18 = 1.8V, TA = -40°C ~ +85°C 40 — — μs tERASE Page erase time VDD18 = 1.8V, TA = -40°C ~ +85°C 20 — 40 ms tMERASE Mass erase time VDD18 = 1.8V, TA = -40°C ~ +85°C 20 — 40 ms I/O Port Characteristics Table 14. I/O Port Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit VI = 0V, On-chip pull-up resister disabled. — — 3 μA — — 3 μA — — 3 μA VI = VDD33, On-chip pull-down resister disabled. — — 3 μA — — 3 μA — — 3 μA 3.3V IO -0.3 — 0.8 V 5V-tolerant IO -0.3 — 0.8 V Reset pin -0.3 — 0.8 V 2 — 3.6 V 3.3V IO IIL Low level input current 5V-tolerant IO Reset pin 3.3V IO IIH High level input current 5V-tolerant IO Reset pin VIL Low level input voltage 3.3V IO VIH VHYS Rev. 1.10 High level input voltage 5V-tolerant IO Schmitt Trigger Input Voltage Hysteresis 2 — 5.5 V Reset pin 2 — 5.5 V 3.3V IO — 400 — mV 5V-tolerant IO — 400 — mV Reset pin — 400 — mV 26 of 35 April 13, 2012 Electrical Characteristics fPLLIN 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Symbol IOL VOL Conditions Min Typ Max Unit 3.3V 4mA drive IO, VOL = 0.4V 4 — — mA 3.3V 8mA drive IO, VOL = 0.4V 8 — — mA 8 — — mA 12 — — mA Backup Domain IO drive @ VBAT =3.3V, VOL = 0.4V, PB8, PB9, PB10. — — 1 mA 3.3V I/O 4mA drive, VOH=VDD33-0.4V 4 — — mA 3.3V I/O 8mA drive, VOH=VDD33-0.4V 8 — — mA 5V-tolerant I/O 8mA drive, VOH = VDD33 - 0.4V 8 — — mA 5V-tolerant I/O 12mA drive, VOH = VDD33 - 0.4V 12 — — mA Backup Domain IO drive@VBAT=3.3V, VOH = VDD33 - 0.4V, PB8, PB9, PB10. — — 1 mA 3.3V 4mA drive IO, IOL = 4mA — — 0.4 V 3.3V 8mA drive IO, IOL = 8mA — — 0.4 V 5V-tolerant 8mA drive IO, IOL=8mA — — 0.4 V Low level output current 5V-tolerant 8mA drive IO, VOL=0.4V (GPO Sink current) 5V-tolerant 12mA drive IO, VOL=0.4V High level output current (GPO Source current) Low level output voltage 5V-tolerant 12mA drive IO, IOL=12mA VOH High level output voltage RPU Internal pull-up resistor RPD Internal pull-down resistor Rev. 1.10 — — 0.4 V 3.3V 4mA drive IO, IOH = 4mA VDD33 0.4V — — V 3.3V 8mA drive IO, IOH = 8mA VDD33 0.4V — — V 5V-tolerant 8 mA drive IO, IOH=8mA VDD33 0.4V — — V 5V-tolerant 12 mA drive IO, IOH=12mA VDD33 0.4V — — V 3.3V I/O 34 — 74 kΩ 5V-tolerant I/O 38 — 89 kΩ 3.3V I/O 29 — 86 kΩ 5V-tolerant I/O 35 — 107 kΩ 27 of 35 April 13, 2012 Electrical Characteristics IOH Parameter 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 ADC Characteristics Table 15. ADC Characteristics Symbol TA = 25°C, unless otherwise specified. Parameter Conditions Min Typ Max Unit 2.7 3.3 3.6 V 0 — VDDA V Operating Voltage VADCIN A/D Converter Input voltage Range IADC Current Consumption VDDA = 3.3V — 1 TBD mA IADC_DN Power Down current Consumption VDDA = 3.3V — 1 10 uA fADC A/D Converter Clock 0.7 — 14 MHz fS Sampling Rate 0.05 — 1 MHz fADCCONV A/D Converter Conversion Time — 14 — tADC RI Input Sampling Switch Resistance — — 1 kΩ CI Input Sampling Capacitance — — 5 pF tSU Startup Time — — 1 us N A/D Converter Resolution — 12 — bits INL Integral Non-linearity error fS = 1MHz, VDDA = 3.3V -— ±2 ±5 LSB DNL Differential Non-linearity fS = 1MHz, VDDA = 3.3V error — — ±1 LSB EO Offset Error — — ±10 LSB EG Gain Error — — ±10 LSB No pin/pad capacitance included NOTES: 1. Guaranteed by design, not tested in production. 2. The figure below shows the equivalent circuit of the A/D Converter Sample-and-Hold input stage where CI is the storage capacitor, RI is the resistance of the sampling switch and RS is the output impedance of the signal source VS. Normally the sampling phase duration is approximately, 1.5/fADC. The capacitance, CI, must be charged within this time frame and it must be ensured that the voltage at its terminals becomes sufficiently close to VS for accuracy. To guarantee this, RS may not have an arbitrarily large value. SAR ADC sample RS CI VS RI Figure 6. ADC Sampling Network Model Rev. 1.10 28 of 35 April 13, 2012 Electrical Characteristics VDDA 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 The worst case occurs when the extremities of the input range (0V and VREF) are sampled consecutively. In this situation a sampling error below ¼ LSB is ensured by using the following equation: RS < 1.5 − RI f ADC C I ln(2 N + 2 ) If, in a system where this A/D Converter is used, there are no rail-to-rail input voltage variations between consecutive sampling phases, Rs may be larger than the value indicated by the equation above. Operation Amplifier/Comparator Characteristics Table 16. OPA/CMP Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit VDDA Operating Voltage — 2.7 3.3 3.6 V IOPA/CMP Typical Operating Current — — 230 — uA Assign registers OPAEN = 0 and EN_OPAOP = 0 — — 0.1 uA VDDA = 3.3V, AnOF[5:0] = ‘100000’ -15 — 15 mV VDDA = 3.3V, After calibration -1 — 1 mV TA = -40°C ~ +85°C — — 0.04 mV/°C — — 10 — MW — dB IOPA/CMP_DN Power Down Supply Current VIOS Input Offset Voltage VIOS_DRIFT Input Offset Voltage Drift RINPUT Input Resistance GV Voltage Gain 60 100 — RL=100kΩ — 1,3 — RL=100kΩ, CL=100pF — 1.24 — Ut Unit-Gain Bandwidth VCM Common Mode Voltage Range VDDA = 3.3V VOV OPA Output Voltage Wwing VDDA = 3.3V tRT Comparator Response Time SR Slew Rate MHz VSSA — VDDA – 1.2 V VSSA+0.3 — VDDA – 0.5 V/us VDDA = 3.3V; Input Overdrive = ±10mV — 1.6 — us VDDA = 3.3V; Output capacitor load CL=100pF — 1 — V/us NOTE: Guaranteed by design, not tested in production. GPTM Characteristics Table 17. GPTM Characteristics Symbol Parameter Conditions Min Typ Max Unit — — 72 MHz fGPTM Timer clock source — tRES Timer resolution time — 1 — — 1/fGPTM fEXT External signal frequency on channel 1 ~ 4 — — — 1/2 fGPTM RES Timer resolution — — — 16 bits Rev. 1.10 29 of 35 April 13, 2012 Electrical Characteristics where fADC is the ADC clock frequency and N is the ADC resolution (N = 12 in this case). A safe margin should be considered due to the pin/pad parasitic capacitances, which are not accounted for in this simple model. 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 I2C Characteristics Table 18. I2C Characteristics Symbol Parameter Conditions Min Typ Max Unit SCL clock frequency — — — 400 kHz tSCL(H) SCL clock high time — 600 — — ns tSCL(L) SCL clock low time — 1300 — — ns tFALL SCL and SDA fall time — — — 300 ns tRISE SCL and SDA rise time — — — 300 ns tSU(STA) START condition setup time — 600 — — ns tH(STA) START condition hold time — 600 — — ns tSU(SDA) SDA data setup time — 100 — — ns tH(SDA) SDA data hold time — 0 — — ns tSU(STO) STOP condition setup time — 600 — — ns tRISE tFALL SCL tSCL(L) tH(STA) tSCL(H) tH(SDA) tSU(SDA) tSU(STO) SDA tSU(STA) Figure 7. I2C Timing Diagram Rev. 1.10 30 of 35 April 13, 2012 Electrical Characteristics fSCL 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 SPI Characteristics Table 19. SPI Characteristics Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency — — — fPCLK/4 MHz tSCK(H) SCK clock high time — fPCLK/8 — — ns tSCK(L) SCK clock low time — fPCLK/8 — — ns tV(MO) Data output valid time — — — 5 ns tH(MO) Data output hold time — 2 — — ns tSU(MI) Data input setup time — 5 — — ns tH(MI) Data input hold time — 5 — — ns SPI Slave mode tSU(SEL) SEL enable setup time — 4 tPCLK — — ns tH(SEL) SEL enable hold time — 2 tPCLK — — ns tA(SO) Data output access time — — — 3 tPCLK ns tDIS(SO) Data output disable time — — — 10 ns tV(SO) Data output valid time — — — 25 ns tH(SO) Data output hold time — 15 — — ns tSU(SI) Data input setup time — 5 — — ns tH(SI) Data input hold time — 4 — — ns tSCK SCK (CPOL = 0) tSCK(H) tSCK(L) SCK (CPOL = 1) tV(MO) MOSI DATA VALID tSU(MI) MISO MOSI MISO DATA VALID DATA VALID tH(MI) CPHA = 1 DATA VALID DATA VALID tV(MO) tH(MO) DATA VALID tSU(MI) tH(MO) DATA VALID DATA VALID DATA VALID tH(MI) DATA VALID CPHA = 0 DATA VALID DATA VALID Figure 8. SPI Timing Diagram – SPI Master Mode Rev. 1.10 31 of 35 April 13, 2012 Electrical Characteristics SPI Master mode 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 SEL tSU(SEL) tH(SEL) tSCK SCK (CPOL=0) tSCK(L) SCK (CPOL=1) tSU(SI) MOSI LSB/MSB IN MSB/LSB IN tA(SO) MISO tH(SI) tV(SO) tDIS(SO) tH(SO) MSB/LSB OUT LSB/MSB OUT Figure 9. SPI Timing Diagram – SPI Slave Mode and CPHA=1 Rev. 1.10 32 of 35 April 13, 2012 Electrical Characteristics tSCK(H) 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 5 Package Information Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website (http://www.holtek.com.tw/english/literature/package.pdf) for the latest version of the package information. Package Information Package Information 48-pin LQFP (7mmx7mm) Outline Dimensions 48-pin LQFP (7mm7mm) Outline Dimensions Symbol Dimensions in inch Min. Nom. Max. A 0.350 0.272 Dimensions in inch 0.358 SymbolB 0.280 A B C D E D E F G 0.350 Nom. 0.350 0.358 0.272 0.280 0.020 0.008 ― ― 0.057 ― 0.272 ― 0.350 0.272 0.053 Max. 0.358 0.280 0.358 0.280 H ― 0.020 F I ― 0.008 0.004 ― G J 0.053 0.018 ― 0.057 0.030 H K ― 0.004 ― 0.063 0.008 ― 0 0.004 7 — I J 0.018 K Symbol 0.004 α Rev. 1.10 C Min. A ― Dimensions in mm ― ― 0.063 0.030 0.008 Min. Nom. Max. 8.90 9.10 0° ― 7° B 6.90 7.10 C 8.90 9.10 D 6.90 7.10 E 0.50 F 0.20 G 1.35 1.45 H 1.60 I 0.10 J 0.45 0.75 33 of 35 April 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Symbol Min. Nom. Max. A 8.90 ― 9.10 B 6.90 ― 7.10 C 8.90 ― 9.10 D 6.90 ― 7.10 E ― 0.50 ― F ― 0.20 ― G 1.35 ― 1.45 H ― ― 1.60 I — 0.10 — J 0.45 ― 0.75 K 0.10 ― 0.20 α 0° ― 7° 34 of 35 April 13, 2012 Package Information Rev. 1.10 Dimensions in mm 32-bit ARM Cortex™-M3 MCU HT32F1251/51B/52/53 Package Information Holtek Semiconductor Inc. (Headquarters) No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw Holtek Semiconductor Inc. (Taipei Sales Office) 4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline) Holtek Semiconductor Inc. (Shenzhen Sales Office) 5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057 Tel: 86-755-8616-9908, 86-755-8616-9308 Fax: 86-755-8616-9722 Holtek Semiconductor (USA), Inc. (North America Sales Office) 46729 Fremont Blvd., Fremont, CA 94538, USA Tel: 1-510-252-9880 Fax: 1-510-252-9885 http://www.holtek.com Copyright© 2011 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw. Rev. 1.10 35 of 35 April 13, 2012