APT35GP120JD2 1200V E E ® POWER MOS 7 IGBT G The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 50 kHz operation @ 800V, 12A • Low Gate Charge • 20 kHz operation @ 800V, 22A • Ultrafast Tail Current shutoff • RBSOA rated 27 2 T- C SO "UL Recognized" ISOTOP ® C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT35GP120JD2 VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 64 I C2 Continuous Collector Current @ TC = 110°C 29 I CM Pulsed Collector Current RBSOA PD TJ,TSTG TL 1 UNIT Volts Amps 140 @ TC = 25°C 140A @ 960V Reverse Bias Safe Operating Area @ TJ = 150°C Watts 284 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Characteristic / Test Conditions MIN TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C) 2.9 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C) 2.8 Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) I GES 1200 500 2 Gate-Emitter Leakage Current (VGE = ±20V) µA 3000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Volts nA Rev B 7-2002 BVCES UNIT 050-7408 Symbol APT35GP120JD2 DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 3423 VGE = 0V, VCE = 25V 252 Reverse Transfer Capacitance f = 1 MHz 30 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7 150 VCE = 600V 21 I C = 35A 62 Input Capacitance Coes Output Capacitance Cres VGEP Qge Qgc RBSOA TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Reverse Bias Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 140 A 15V, L = 100µH,VCE = 960V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff I C = 35A 63 4 Turn-on Switching Energy (Diode) 5 Eon1 80 25 R G = 5Ω Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 13 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 800V 1191 TJ = +25°C 2756 6 13 VGE = 15V 86 Current Fall Time I C = 35A 118 Turn-on Switching Energy R G = 5Ω Current Rise Time Turn-off Delay Time Turn-off Switching Energy µJ 775 Inductive Switching (125°C) VCC = 800V 4 Turn-on Switching Energy (Diode) ns 5 25 ns 1203 TJ = +125°C 4149 6 µJ 3016 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .44 RΘJC Junction to Case (DIODE) .90 WT Package Weight 5.90 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy. (See Figures 21, 23.) 050-7408 Rev B 7-2002 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 50 50 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 45 IC, COLLECTOR CURRENT (A) 35 30 25 TC=25°C 20 TC=125°C 15 10 25 15 0 1 2 3 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 60 TJ = 25°C 40 TJ = 125°C 20 TJ = -55°C 0 IC= 70A 4 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.5 IC= 35A 3 IC=17.5A 2.5 2 1.5 1 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 8 4 2 0 0 4.5 0.85 0.8 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 0.90 40 60 80 100 120 140 160 GATE CHARGE (nC) FIGURE 4, Gate Charge VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 IC=70A 3.5 3 IC= 35A 2.5 2 IC= 17.5A 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 80 0.95 20 5 1.15 1.0 VCE= 960V 6 90 1.05 VCE= 600V 10 1.2 1.1 VCE= 240V 12 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4.5 IC = 35A TJ = 25°C 14 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 FIGURE 2, Output Characteristics (VGE = 10V) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 80 TC=125°C 10 0 100 TC=25°C 20 5 250µs PULSE TEST <0.5 % DUTY CYCLE IC, COLLECTOR CURRENT (A) 50 0 FIGURE 1, Output Characteristics(VGE = 15V) 120 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 35 5 0 1 2 3 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 40 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 5TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev B 7-2002 40 050-7408 IC, COLLECTOR CURRENT (A) 45 APT35GP120JD2 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE APT35GP120JD2 180 25 VGE= 10V 20 VGE= 15V 15 10 VCE = 800V 5 TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 30 VCE = 800V 160 RG = 5Ω L = 100 µH 140 VGE =10V,TJ=125°C 120 VGE =15V,TJ=25°C 100 80 VGE =10V,TJ=25°C 60 40 20 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 70 180 TJ = 25 or125°C,VGE = 10V 60 VGE =15V,TJ=125°C TJ = 125°C, VGE = 10V or 15V 160 tf, FALL TIME (ns) tr, RISE TIME (ns) 140 50 40 30 20 TJ = 25 or 125°C,VGE =10V 8000 TJ=125°C,VGE=15V 7000 TJ=125°C,VGE=10V 6000 5000 4000 3000 TJ= 25°C,VGE=15V 2000 TJ= 25°C,VGE=10V 1000 EOFF, TURN OFF ENERGY LOSS (µJ) 7000 VCE = 800V VGE = +15V RG = 5 Ω RG = 5Ω, L = 100µH, VCE = 800V 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 6000 VCE = 800V VGE = +15V RG = 5 Ω TJ = 125°C, VGE = 10V or 15V 5000 4000 3000 2000 1000 TJ = 25°C, VGE = 10V or 15V 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 12000 9000 VCE = 800V VGE = +15V RG = 5 Ω 10000 Eon2 70A 8000 Eoff 70A 6000 Eon2 35A 4000 Eoff 35A Eon2 17.5A 2000 Eoff 17.5A 0 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (µJ) EON2, TURN ON ENERGY LOSS (µJ) TJ = 25°C, VGE = 10V or 15V 60 0 9000 SWITCHING ENERGY LOSSES (µJ) 80 20 RG = 5Ω, L = 100µH, VCE = 800V 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current Rev B 7-2002 100 40 10 050-7408 120 8000 VCE = 800V VGE = +15V RG = 5 Ω Eon2 70A 7000 6000 5000 4000 Eoff70A Eon2 35A 3000 2000 1000 Eoff 35A 0 -25 Eon2 17.5A Eoff 17.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT35GP120JD2 160 10,000 140 Cies 1,000 500 Coes 100 50 Cres 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage IC, COLLECTOR CURRENT (A) 120 P C, CAPACITANCE ( F) 5,000 100 80 60 40 20 0 0 100 200 300 400 500 600 700 800 900 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Reverse Bias Safe Operating Area 0.45 0.1 0.2 0.05 0.1 0.05 Note: PDM 0.02 0.01 0.01 0.005 SINGLE PULSE t1 t2 Duty Factor D = t1/t2 Peak TJ = PDM x ZθJC + TC 0.001 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 70 Fmax = min(f max1 , f max 2 ) 10 5 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 10 20 30 40 50 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Rev B 7-2002 1 TJ = 125°C TC = 75°C D = 50 % VCE = 800V RG = 5 Ω f max1 = 050-7408 10-5 FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) D=0.5 APT35GP120JD2 APT 35GP120JD2 Gate Voltage 10% V CE IC V CC TJ = 125 C t d(on) 18V tr Collector Current A 90% D.U.T. 5% 10% 5% Collector Voltage Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST Gate Voltage t d(off) T J = 125 C *DRIVER SAME TYPE AS D.U.T. Collector Voltage 90% A V CE tf IC 100uH V CLAMP 10% Switching Energy 0 Collector Current Rev B 7-2002 Figure 23, Turn-off Switching Waveforms and Definitions 050-7408 B A DRIVER* Figure 24, EON1 Test Circuit D.U.T. APT35GP120JD2 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. Characteristic / Test Conditions APT35GP120JD2 Maximum Average Forward Current (TC = 80°C, Duty Cycle = 0.5) 35 RMS Forward Current 70 UNIT Amps 210 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions MIN TYP IF = 35A VF Maximum Forward Voltage MAX UNIT 2.5 2.0 IF = 60A Volts IF = 35A, TJ = 150°C 2.0 DYNAMIC CHARACTERISTICS Symbol Characteristic MIN TYP MAX 70 85 trr1 Reverse Recovery Time, IF = 1.0A, diF /dt = -15A/µs, VR = 30V, TJ = 25°C trr2 Reverse Recovery Time TJ = 25°C 70 trr3 IF = 35A, diF /dt = -240A/µs, VR = 650V TJ = 100°C 160 tfr1 Forward Recovery Time TJ = 25°C 255 tfr2 IF = 35A, diF /dt = 240A/µs, VR = 650V TJ = 100°C 255 IRRM1 Reverse Recovery Current TJ = 25°C 7 12 IRRM2 IF = 35A, diF /dt = -240A/µs, VR = 650V TJ = 100°C 12 20 Qrr1 Recovery Charge TJ = 25°C 660 Qrr2 IF = 35A, diF /dt = -240A/µs, VR = 650V TJ = 100°C 1640 Vfr1 Forward Recovery Voltage TJ = 25°C 15 Vfr2 IF = 35A, diF /dt = 240A/µs, VR = 650V TJ = 100°C 20 Rate of Fall of Recovery Current TJ = 25°C 245 IF = 35A, diF /dt = -240A/µs, VR = 650V (See Figure 33) TJ = 100°C 160 diM/dt UNIT ns Amps nC Volts A/µs 1.0 D=0.5 0.2 0.1 0.1 0.05 0.05 0.02 NOTE: SINGLE PULSE 0.005 t1 Rev B 7-2002 0.01 t2 DUTY FACTOR D = t1 / t2 PEAK TJ =PDM x Z JC + TC 0.001 10-5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) FIGURE 25, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION 10 050-7408 0.01 PDM Z JC, THERMAL IMPEDANCE (°C/W) θ 0.5 APT35GP120JD2 TYPICAL PERFORMANCE CURVES 100 60 40 TJ = 150°C TJ = 25°C 20 TJ = 100°C TJ = -55°C 0 0 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (VOLTS) Figure 26, Forward Voltage Drop vs Forward Current 2000 60A 1600 30A 1200 800 10 50 100 500 1000 diF /dt, CURRENT SLEW RATE (AMPERES/µSEC) Figure27, Reverse Recovery Charge vs Current Slew Rate 2.0 TJ = 100°C VR = 650V 30A 30 15A 20 10 0 0 200 400 600 800 1000 diF /dt, CURRENT SLEW RATE (AMPERES/µSEC) Figure 28, Reverse Recovery Current vs Current Slew Rate Kf, DYNAMIC PARAMETERS (NORMALIZED) 60A 40 1.6 1.2 IRRM 0.8 trr -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29, Dynamic Parameters vs Junction Temperature 200 60A 30A 15A 100 50 tfr, FORWARD RECOVERY TIME (nano-SECONDS) trr, REVERSE RECOVERY TIME (nano-SECONDS) -50 2000 0 0 200 400 600 800 1000 diF /dt, CURRENT SLEW RATE (AMPERES/µSEC) Figure 30, Reverse Recovery Time vs Current Slew Rate Rev B 7-2002 Qrr 0.4 100 TJ = 100°C VR = 650V IF = 30A TJ = 100°C VR = 650V 050-7408 Qrr trr 0.0 250 150 15A 400 0 50 IRRM, REVERSE RECOVERY CURRENT (AMPERES) TJ = 100°C VR = 650V 1600 80 Vfr 1200 60 800 40 400 20 tfr Vfr, FORWARD RECOVERY VOLTAGE (VOLTS) IF, FORWARD CURRENT (AMPERES) 80 Qrr, REVERSE RECOVERY CHARGE (nano-COULOMBS) 2400 0 0 200 400 600 800 1000 diF /dt, CURRENT SLEW RATE (AMPERES/µSEC) Figure31, Forward Recovery Voltage/Time vs Current Slew Rate 0 APT35GP120JD2 Vr D.U.T. trr/Qrr Waveform 30µH PEARSON 411 CURRENT TRANSFORMER +15v diF /dt Adjust 0v -15v Figure 32, Diode Reverse Recovery Test Circuit and Wave Forms 1 IF - Forward Conduction Current 2 diF /dt - Current Slew Rate, Rate of Forward Current Change Through Zero Crossing. 3 IRRM - Peak Reverse Recovery Current. 4 trr - Reverse Recovery Time Measured from Point of IF Current Falling Through Zero to a Tangent Line { 6 diM/dt} Extrapolated Through Zero Defined by 0.75 and 0.50 IRRM. 1 4 6 Zero 5 3 0.5 IRRM 0.75 IRRM 2 5 Qrr - Area Under the Curve Defined by IRRM and trr. 6 diM/dt - Maximum Rate of Current Change During the Trailing Portion of trr. Qrr = 1/2 (trr . IRRM) Figure 33, Diode Reverse Recovery Wave Forms and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) Collector/Cathode * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode Gate Dimensions in Millimeters and (Inches) APT's devices are covered by one or more of the following U.S.patents: 4,895,810 5,256,583 5,045,903 4,748,103 5,089,434 5,283,202 Rev B 7-2002 r = 4.0 (.157) (2 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 5,182,234 5,231,474 5,019,522 5,434,095 5,262,336 5,528,058 050-7408 7.8 (.307) 8.2 (.322) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places)