ETC APT35GP120JD2

APT35GP120JD2
1200V
E
E
®
POWER MOS 7 IGBT
G
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 50 kHz operation @ 800V, 12A
• Low Gate Charge
• 20 kHz operation @ 800V, 22A
• Ultrafast Tail Current shutoff
• RBSOA rated
27
2
T-
C
SO
"UL Recognized"
ISOTOP ®
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT35GP120JD2
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current @ TC = 25°C
64
I C2
Continuous Collector Current @ TC = 110°C
29
I CM
Pulsed Collector Current
RBSOA
PD
TJ,TSTG
TL
1
UNIT
Volts
Amps
140
@ TC = 25°C
140A @ 960V
Reverse Bias Safe Operating Area @ TJ = 150°C
Watts
284
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
MIN
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C)
2.9
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C)
2.8
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
I GES
1200
500
2
Gate-Emitter Leakage Current (VGE = ±20V)
µA
3000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
nA
Rev B 7-2002
BVCES
UNIT
050-7408
Symbol
APT35GP120JD2
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
3423
VGE = 0V, VCE = 25V
252
Reverse Transfer Capacitance
f = 1 MHz
30
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7
150
VCE = 600V
21
I C = 35A
62
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
Qgc
RBSOA
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Reverse Bias Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
140
A
15V, L = 100µH,VCE = 960V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
I C = 35A
63
4
Turn-on Switching Energy (Diode) 5
Eon1
80
25
R G = 5Ω
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
13
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 800V
1191
TJ = +25°C
2756
6
13
VGE = 15V
86
Current Fall Time
I C = 35A
118
Turn-on Switching Energy
R G = 5Ω
Current Rise Time
Turn-off Delay Time
Turn-off Switching Energy
µJ
775
Inductive Switching (125°C)
VCC = 800V
4
Turn-on Switching Energy (Diode)
ns
5
25
ns
1203
TJ = +125°C
4149
6
µJ
3016
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.44
RΘJC
Junction to Case (DIODE)
.90
WT
Package Weight
5.90
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy. (See Figures 21, 23.)
050-7408
Rev B 7-2002
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
50
50
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
45
IC, COLLECTOR CURRENT (A)
35
30
25
TC=25°C
20
TC=125°C
15
10
25
15
0
1
2
3
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
60
TJ = 25°C
40
TJ = 125°C
20
TJ = -55°C
0
IC= 70A
4
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
IC= 35A
3
IC=17.5A
2.5
2
1.5
1
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
8
4
2
0
0
4.5
0.85
0.8
-50
-25
0
25 50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.90
40 60 80 100 120 140 160
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
IC=70A
3.5
3
IC= 35A
2.5
2
IC= 17.5A
1.5
1
0.5
0
-50
-25
0
25
50
75 100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
80
0.95
20
5
1.15
1.0
VCE= 960V
6
90
1.05
VCE= 600V
10
1.2
1.1
VCE= 240V
12
2 3
4 5 6
7 8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.5
IC = 35A
TJ = 25°C
14
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
FIGURE 2, Output Characteristics (VGE = 10V)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
80
TC=125°C
10
0
100
TC=25°C
20
5
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC, COLLECTOR CURRENT (A)
50
0
FIGURE 1, Output Characteristics(VGE = 15V)
120
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
35
5
0
1
2
3
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
40
70
60
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
5TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev B 7-2002
40
050-7408
IC, COLLECTOR CURRENT (A)
45
APT35GP120JD2
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT35GP120JD2
180
25
VGE= 10V
20
VGE= 15V
15
10
VCE = 800V
5 TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
30
VCE = 800V
160 RG = 5Ω
L = 100 µH
140
VGE =10V,TJ=125°C
120
VGE =15V,TJ=25°C
100
80
VGE =10V,TJ=25°C
60
40
20
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
70
180
TJ = 25 or125°C,VGE = 10V
60
VGE =15V,TJ=125°C
TJ = 125°C, VGE = 10V or 15V
160
tf, FALL TIME (ns)
tr, RISE TIME (ns)
140
50
40
30
20
TJ = 25 or 125°C,VGE =10V
8000
TJ=125°C,VGE=15V
7000
TJ=125°C,VGE=10V
6000
5000
4000
3000
TJ= 25°C,VGE=15V
2000
TJ= 25°C,VGE=10V
1000
EOFF, TURN OFF ENERGY LOSS (µJ)
7000
VCE = 800V
VGE = +15V
RG = 5 Ω
RG = 5Ω, L = 100µH, VCE = 800V
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
6000
VCE = 800V
VGE = +15V
RG = 5 Ω
TJ = 125°C, VGE = 10V or 15V
5000
4000
3000
2000
1000
TJ = 25°C, VGE = 10V or 15V
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
12000
9000
VCE = 800V
VGE = +15V
RG = 5 Ω
10000
Eon2 70A
8000
Eoff 70A
6000
Eon2 35A
4000
Eoff 35A
Eon2 17.5A
2000
Eoff 17.5A
0
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
SWITCHING ENERGY LOSSES (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
TJ = 25°C, VGE = 10V or 15V
60
0
9000
SWITCHING ENERGY LOSSES (µJ)
80
20
RG = 5Ω, L = 100µH, VCE = 800V
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
Rev B 7-2002
100
40
10
050-7408
120
8000
VCE = 800V
VGE = +15V
RG = 5 Ω
Eon2 70A
7000
6000
5000
4000 Eoff70A
Eon2 35A
3000
2000
1000
Eoff 35A
0
-25
Eon2 17.5A
Eoff 17.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT35GP120JD2
160
10,000
140
Cies
1,000
500
Coes
100
50
Cres
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
IC, COLLECTOR CURRENT (A)
120
P
C, CAPACITANCE ( F)
5,000
100
80
60
40
20
0
0 100 200 300 400 500 600 700 800 900 1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Reverse Bias Safe Operating Area
0.45
0.1
0.2
0.05
0.1
0.05
Note:
PDM
0.02
0.01
0.01
0.005
SINGLE PULSE
t1
t2
Duty Factor D = t1/t2
Peak TJ = PDM x ZθJC + TC
0.001
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
70
Fmax = min(f max1 , f max 2 )
10
5
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
10
20
30
40
50
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
Rev B 7-2002
1
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 800V
RG = 5 Ω
f max1 =
050-7408
10-5
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
D=0.5
APT35GP120JD2
APT 35GP120JD2
Gate Voltage
10%
V CE
IC
V CC
TJ = 125 C
t d(on)
18V
tr
Collector Current
A
90%
D.U.T.
5%
10%
5%
Collector Voltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
Gate Voltage
t d(off)
T J = 125 C
*DRIVER SAME TYPE AS D.U.T.
Collector Voltage
90%
A
V CE
tf
IC
100uH
V CLAMP
10%
Switching
Energy
0
Collector Current
Rev B 7-2002
Figure 23, Turn-off Switching Waveforms and Definitions
050-7408
B
A
DRIVER*
Figure 24, EON1 Test Circuit
D.U.T.
APT35GP120JD2
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
Characteristic / Test Conditions
APT35GP120JD2
Maximum Average Forward Current (TC = 80°C, Duty Cycle = 0.5)
35
RMS Forward Current
70
UNIT
Amps
210
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
MIN
TYP
IF = 35A
VF
Maximum Forward Voltage
MAX
UNIT
2.5
2.0
IF = 60A
Volts
IF = 35A, TJ = 150°C
2.0
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
70
85
trr1
Reverse Recovery Time, IF = 1.0A, diF /dt = -15A/µs, VR = 30V, TJ = 25°C
trr2
Reverse Recovery Time
TJ = 25°C
70
trr3
IF = 35A, diF /dt = -240A/µs, VR = 650V
TJ = 100°C
160
tfr1
Forward Recovery Time
TJ = 25°C
255
tfr2
IF = 35A, diF /dt = 240A/µs, VR = 650V
TJ = 100°C
255
IRRM1
Reverse Recovery Current
TJ = 25°C
7
12
IRRM2
IF = 35A, diF /dt = -240A/µs, VR = 650V
TJ = 100°C
12
20
Qrr1
Recovery Charge
TJ = 25°C
660
Qrr2
IF = 35A, diF /dt = -240A/µs, VR = 650V
TJ = 100°C
1640
Vfr1
Forward Recovery Voltage
TJ = 25°C
15
Vfr2
IF = 35A, diF /dt = 240A/µs, VR = 650V
TJ = 100°C
20
Rate of Fall of Recovery Current
TJ = 25°C
245
IF = 35A, diF /dt = -240A/µs, VR = 650V (See Figure 33)
TJ = 100°C
160
diM/dt
UNIT
ns
Amps
nC
Volts
A/µs
1.0
D=0.5
0.2
0.1
0.1
0.05
0.05
0.02
NOTE:
SINGLE PULSE
0.005
t1
Rev B 7-2002
0.01
t2
DUTY FACTOR D = t1 / t2
PEAK TJ =PDM x Z JC + TC
0.001
10-5
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
FIGURE 25, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION
10
050-7408
0.01
PDM
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.5
APT35GP120JD2
TYPICAL PERFORMANCE CURVES
100
60
40
TJ = 150°C
TJ = 25°C
20
TJ = 100°C
TJ = -55°C
0
0
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (VOLTS)
Figure 26, Forward Voltage Drop vs Forward Current
2000
60A
1600
30A
1200
800
10
50
100
500 1000
diF /dt, CURRENT SLEW RATE (AMPERES/µSEC)
Figure27, Reverse Recovery Charge vs Current Slew Rate
2.0
TJ = 100°C
VR = 650V
30A
30
15A
20
10
0
0
200
400
600
800
1000
diF /dt, CURRENT SLEW RATE (AMPERES/µSEC)
Figure 28, Reverse Recovery Current vs Current Slew Rate
Kf, DYNAMIC PARAMETERS
(NORMALIZED)
60A
40
1.6
1.2
IRRM
0.8
trr
-25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29, Dynamic Parameters vs Junction Temperature
200
60A
30A
15A
100
50
tfr, FORWARD RECOVERY TIME
(nano-SECONDS)
trr, REVERSE RECOVERY TIME
(nano-SECONDS)
-50
2000
0
0
200
400
600
800
1000
diF /dt, CURRENT SLEW RATE (AMPERES/µSEC)
Figure 30, Reverse Recovery Time vs Current Slew Rate
Rev B 7-2002
Qrr
0.4
100
TJ = 100°C
VR = 650V
IF = 30A
TJ = 100°C
VR = 650V
050-7408
Qrr
trr
0.0
250
150
15A
400
0
50
IRRM, REVERSE RECOVERY CURRENT
(AMPERES)
TJ = 100°C
VR = 650V
1600
80
Vfr
1200
60
800
40
400
20
tfr
Vfr, FORWARD RECOVERY VOLTAGE
(VOLTS)
IF, FORWARD CURRENT
(AMPERES)
80
Qrr, REVERSE RECOVERY CHARGE
(nano-COULOMBS)
2400
0
0
200
400
600
800
1000
diF /dt, CURRENT SLEW RATE (AMPERES/µSEC)
Figure31, Forward Recovery Voltage/Time vs Current Slew Rate
0
APT35GP120JD2
Vr
D.U.T.
trr/Qrr
Waveform
30µH
PEARSON 411
CURRENT
TRANSFORMER
+15v
diF /dt Adjust
0v
-15v
Figure 32, Diode Reverse Recovery Test Circuit and Wave Forms
1
IF - Forward Conduction Current
2
diF /dt - Current Slew Rate, Rate of Forward
Current Change Through Zero Crossing.
3
IRRM - Peak Reverse Recovery Current.
4
trr - Reverse Recovery Time Measured from Point of IF
Current Falling Through Zero to a Tangent Line { 6 diM/dt}
Extrapolated Through Zero Defined by 0.75 and 0.50 IRRM.
1
4
6
Zero
5
3
0.5 IRRM
0.75 IRRM
2
5
Qrr - Area Under the Curve Defined by IRRM and trr.
6
diM/dt - Maximum Rate of Current Change During the Trailing Portion of trr.
Qrr = 1/2 (trr . IRRM)
Figure 33, Diode Reverse Recovery Wave Forms and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
Dimensions in Millimeters and (Inches)
APT's devices are covered by one or more of the following U.S.patents:
4,895,810
5,256,583
5,045,903
4,748,103
5,089,434
5,283,202
Rev B 7-2002
r = 4.0 (.157)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
5,182,234
5,231,474
5,019,522
5,434,095
5,262,336
5,528,058
050-7408
7.8 (.307)
8.2 (.322)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)