ETC DG428DJ

DG428/429
Single 8-Ch/Differential 4-Ch Latchable Analog Multiplexers
Features
Benefits
Applications
Low rDS(on): 55 Low Charge Injection: 1 pC
On-Board TTL Compatible
Address Latches
High Speed—tTRANS: 160 ns
Break-Before-Make
Low Power Consumption: 0.3 mW
Improved System Accuracy
Microprocessor Bus Compatible
Easily Interfaced
Reduced Crosstalk
High Throughput
Improved Reliability
rs
Data Acquisition Systems
Automatic Test Equipment
Avionics and Military Systems
Communication Systems
Microprocessor-Controlled
Analog Systems
Medical Instrumentation
Description
The DG428/DG429 analog multiplexers have on-chip
address and control latches to simplify design in
microprocessor based applications. Break-before-make
switching action protects against momentary crosstalk of
adjacent input signals.
all switches off for stacking several devices. All control
inputs, address (Ax) and enable (EN) are TTL compatible
over the full specified operating temperature range.
The DG428 selects one of eight single-ended inputs to a
common output, while the DG429 selects one of four
differential inputs to a common differential output.
The silicon-gate CMOS process enables operation over a
wide range of supply voltages. The absolute maximum
voltage rating is extended to 44 V. Additionally, single
supply operation is also allowed and an epitaxial layer
prevents latchup.
An on channel conducts current equally well in both
directions. In the off state each channel blocks voltages
up to the power supply rails. An enable (EN) function
allows the user to reset the multiplexer/demultiplexer to
On-board TTL-compatible address latches simplify the
digital interface design and reduce board space in
bus-controlled systems such as data acquisition systems,
process controls, avionics, and ATE.
Functional Block Diagrams and Pin Configurations
RS
3
2
1
20 19
A1
NC
PLCC
WR
DG428
A0
DG428
Dual-In-Line
WR
1
18
RS
A0
2
17
A1
EN
3
Latches
16
A2
EN
4
Latches
18
A2
V–
4
Decoders/Drivers
15
GND
V–
5
Decoders/Drivers
17
GND
16
V+
5
14
V+
S1
6
S1
S2
7
15
S5
S2
6
13
S5
S3
8
14
S6
S3
7
12
S6
S4
8
11
S7
D
9
10
S8
S7
S8
NC
D
S4
9 10 11 12 13
Top View
Top View
Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70063.
Siliconix
S-56532—Rev. H, 19-Jan-98
1
DG428/429
Functional Block Diagrams and Pin Configurations (Cont’d)
RS
3
2
1
20 19
A1
NC
PLCC
WR
DG429
A0
DG429
Dual-In-Line and SOIC
WR
1
18
RS
A0
2
17
A1
EN
3
Latches
16
GND
EN
4
Latches
18
GND
4
Decoders/Drivers
V+
V–
5
Decoders/Drivers
17
VDD
S1a
6
16
S1b
S2a
7
15
S2b
S3a
8
14
S3b
S1b
S2a
6
13
S2b
S3a
7
12
S3b
S4a
8
11
S4b
Da
9
10
Db
9 10 11 12 13
S 4b
14
Db
5
NC
S1a
Da
15
S 4a
V–
Top View
Top View
Truth Table — DG428
8-Channel Single-Ended Multiplexer
A2
A1
A0
EN
WR
RS
On Switch
X
X
X
X
1
Maintains previous
switch condition
A0
EN
WR
RS
On Switch
X
X
X
1
Maintains previous
switch condition
X
X
0
None (latches cleared)
X
X
X
X
0
None (latches cleared)
X
X
X
X
X
0
0
1
None
X
X
0
0
1
None
0
0
0
1
0
1
1
0
0
1
0
1
1
0
0
1
1
0
1
2
0
1
1
0
1
2
0
1
0
1
0
1
3
1
0
1
0
1
3
0
1
1
1
0
1
4
1
1
1
0
1
4
1
0
0
1
0
1
5
1
0
1
1
0
1
6
1
1
0
1
0
1
7
1
1
1
1
0
1
8
Ordering Information — DG428
Temp Range
–40 to 85_C
–55 to 125_C
2
A1
X
Truth Table — DG429
Differential 4-Channel Multiplexer
Package
Part Number
18-Pin Plastic DIP
DG428DJ
20-Pin PLCC
18-Pin CerDIP
DG428DN
DG428AK
DG428AK/883
Logic
L
i “0” = VAL 00.88 V
Logic “1” = VAH 2.4
24V
X = Don’t
Don t Care
Ordering Information — DG429
Temp Range
–40 to 85_C
–55 to 125_C
Package
Part Number
18-Pin Plastic DIP
DG429DJ
20-Pin PLCC
DG429DN
18-Pin Widebody SOIC
DG429DW
18-Pin CerDIP
DG429AK
DG429AK/883
Siliconix
S-56532—Rev. H, 19-Jan-98
DG428/429
Absolute Maximum Ratings
Power Dissipation (Package)b
18-Pin Plastic DIPc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 mW
18-Pin CerDIPd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900 mW
20-Pin PLCCe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 mW
Voltage Referenced to V–
V+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 V
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 V
Digital Inputsa, VS, VD . . . . . . . . . . . . . . . (V–) –2 V to (V+) +2 V or
30 mA, whichever occurs first
28-Pin Widebody SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 mW
Notes:
a. Signals on SX, DX or INX exceeding V+ or V– will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads soldered or welded to PC board.
c. Derate 6.3 mW/_C above 75_C.
d. Derate 12 mW/_C above 75_C.
e. Derate 10 mW/_C above 75_C.
Current (Any Terminal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle Max) . . . . . . . . . . . . . . . . . . 100 mA
Storage Temperature
(AK Suffix) . . . . . . . . . . . . –65 to 150_C
(DJ, DN Suffix) . . . . . . . . . –65 to 125_C
Specificationsa
Test Conditions
Unless Otherwise Specified
A Suffix
D Suffix
–55 to 125_C
–40 to 85_C
V+ = 15 V, V– = –15 V, WR = 0, RS
= 2.4 V, VIN = 2.4 V, 0.8 Vf
Tempb
rDS(on)
VD = "10 V, VAL = 0.8 V
IS = –1 mA, VAH = 2.4 V
Room
Full
55
DrDS(on)
–10 V < VS < 10 V
IS = –1 mA
Room
5
Source Off
Leakage Current
IS(off)
VS = "10 V, VD = #10 V
VEN = 0 V
Room
Full
"0.03
–0.5
–50
0.5
50
–0.5
–50
0.5
50
DG428
ID(off)
Room
Full
"0.07
Drain Off
L k
Leakage
C
Current
–1
–100
1
100
–1
–100
1
100
DG429
Room
Full
"0.05
–1
–50
1
50
–1
–50
1
50
DG428
Room
Full
"0.07
–1
–100
1
100
–1
–100
1
100
DG429
Room
Full
"0.05
–1
–50
1
50
–1
–50
1
50
VA = 2.4 V
Full
0.01
1
1
VA = 15 V
Full
0.01
1
1
Full
–0.01
Parameter
Symbol
Typc
Mind Maxd Mind Maxd Unit
Analog Switch
Analog Signal Rangee
VANALOG
Drain-Source
On-Resistance
Greatest Change in
rDS(on) Between
Channelsg
Drain On
Leakage
Current
L k
C
ID(on)
Full
VD = "10 V
VS = #10 V
VEN = 0 V
VS = VD = "10 V
VEN = 2.4 V
VAL = 0.8 V
VAH = 2.4 V
–15
15
–15
100
125
15
V
100
125
W
%
nA
Digital Control
Logic
g Input
p Current
I
Input
tV
Voltage
lt
Hi
High
h
IAH
Logic Input Current
Input Voltage Low
IAL
VEN = 0 V, 2.4 V, VA = 0 V
RS = 0 V, WR = 0 V
Logic Input Capacitance
Cin
f = 1 MHz
Room
8
Transition Time
tTRANS
See Figure 5
Room
Full
150
Break-Before-Make
Interval
tOPEN
See Figure 4
Full
30
Enable and Write
Turn-On Time
tON(EN,WR)
See Figures 6 and 7
Room
Full
90
150
225
150
225
Enable and Reset
Turn-Off Time
tOFF(EN,RS)
See Figures 6 and 8
Room
Full
55
150
300
150
300
Charge Injection
Q
VGEN = 0 V, RGEN = 0 W
CL = 1 nF, See Figure 9
Room
1
–1
mA
–1
pF
Dynamic Characteristics
250
300
10
250
300
10
ns
Siliconix
S-56532—Rev. H, 19-Jan-98
pC
3
DG428/429
Specificationsa (Cont’d)
Test Conditions
Unless Otherwise Specified
Parameter
Symbol
V+ = 15 V, V– = –15 V, WR = 0, RS
= 2.4 V, VIN = 2.4 V, 0.8 Vf
Tempb
Typc
–75
A Suffix
D Suffix
–55 to 125_C
–40 to 85_C
Mind Maxd Mind Maxd Unit
Dynamic Characteristics (Cont’d)
Off Isolation
OIRR
VEN = 0 V, RL = 300 W, CL = 15 pF
VS = 7 VRMS, f = 100 kHz
Room
Source Off Capacitance
CS(off)
VS = 0 V, VEN = 0 V, f = 1 MHz
Drain Off Capacitance
Drain On Capacitance
CD(off)
VD = 0 V,, VEN = 0 V
f = 1 MHz
MH
CD(on)
Room
11
DG428
Room
40
DG429
Room
20
DG428
Room
54
DG429
Room
34
dB
ppF
Minimum Input Timing Requirements
Write Pulse Width
tW
AX, EN Data Set Up
time
tS
AX, EN Data Hold Time
tH
Reset Pulse Width
tRS
See Figure 2
VS = 5 V, See Figure 3
Full
100
100
Full
100
100
Full
10
10
Full
100
100
ns
Power Supplies
Positive Supply Current
Negative Supply
Current
I+
I–
VEN = 0 V, VA = 0, RS = 5 V
Room
20
100
Room
–0.001
–5
100
mA
A
–5
Specificationsa for Single Supply
Test Conditions
Unless Otherwise Specified
Parameter
Symbol
V+ = 12 V, V– = 0 V, WR = 0
RS = 2.4 V, VIN = 2.4 V, 0.8 Vf
Tempb
Typc
A Suffix
D Suffix
–55 to 125_C
–40 to 85_C
Mind
Maxd
Mind
Maxd
Unit
0
12
0
12
V
150
W
Analog Switch
Analog Signal Rangee
Drain-Source
On-Resistance
rDS(on) Matchg
Source Off
Leakage Current
Drain Off
L k
Leakage
C
Current
Drain On
L k
Leakage
C
Current
VANALOG
Full
rDS(on)
VD = +10 V, VAL = 0.8 V
IS = –500 mA, VAH = 2.4 V
Room
80
DrDS(on)
0 V < VS < 10 V
IS = –1 mA
Room
5
IS(off)
VS = 0 V, 10 V, VD = 10 V, 0 V
VEN = 0 V
Room
Full
0.03
–0.5
–50
0.5
50
–0.5
–50
0.5
50
ID(off)
ID(on)
150
%
VD = 0 V, 10 V
VS = 10 V
V, 0 V
VEN = 0 V
DG428
Room
Full
0.07
–1
–100
1
100
–1
–100
1
100
DG429
Room
Full
0.05
–1
–50
1
50
–1
–50
1
50
VS = VD = 0 V, 10 V
VEN = 2.4 V
VAL = 0.8 V
VAH = 2.4 V
DG428
Room
Full
0.07
–1
–100
1
100
–1
–100
1
100
DG429
Room
Full
0.05
–1
–50
1
50
–1
–50
1
50
nA
Digital Control
Logic
g Input
p Current
I tV
Input
Voltage
lt
Hi
High
h
Logic Input Current
Input Voltage Low
4
IAH
IAL
VA = 2.4 V
Full
1
1
VA = 12 V
Full
1
1
VEN = 0 V, 2.4 V, VA = 0 V
RS = 0 V, WR = 0 V
Full
–1
mA
–1
Siliconix
S-56532—Rev. H, 19-Jan-98
DG428/429
Specificationsa for Single Supply (Cont’d)
Test Conditions
Unless Otherwise Specified
Parameter
Symbol
V+ = 12 V, V– = 0 V, WR = 0
RS = 2.4 V, VIN = 2.4 V, 0.8 Vf
Tempb
Typc
A Suffix
D Suffix
–55 to 125_C
–40 to 85_C
Mind
Maxd
Mind
Maxd
Unit
Dynamic Characteristics
Transition Time
tTRANS
S1 = 10 V/2 V, S8 = 2 V/ 10 V
See Figure 5
Room
Full
160
Break-Before-Make
Interval
tOPEN
See Figure 4
Room
Full
40
Enable and Write
Turn-On Time
tON(EN,
S1 =5 V
See Figures 6 and 7
Room
Full
110
300
400
300
400
Enable and Reset
Turn-Off Time
tOFF(EN,
S1 =5 V
See Figures 6 and 8
Room
Full
70
300
400
300
400
Charge Injection
Q
VGEN = 6 V, RGEN = 0 W
CL = 1 nF, See Figure 9
Room
4
pC
OIRR
VEN = 0 V, RL = 300 W, CL = 15 pF
VS = 7 VRMS, f = 100 kHz
Room
–75
dB
WR)
RS)
Off Isolation
280
350
25
10
280
350
25
10
ns
Minimum Input Timing Requirements
Write Pulse Width
tW
AX, EN
Data Set Up Time
tS
AX, EN
Data Hold Time
tH
Reset Pulse Width
tRS
I+
Full
100
100
Full
100
100
Full
10
10
VS = 5 V, See Figure 3
Full
100
100
VEN = 0 V, VA = 0, RS = 5 V
Room
See Figure 2
ns
Power Supplies
Positive Supply Current
20
100
100
mA
Notes:
a.
b.
c.
d.
e.
f.
g.
Refer to PROCESS OPTION FLOWCHART.
Room = 25_C, Full = as determined by the operating temperature suffix.
Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
Guaranteed by design, not subject to production test.
VIN = input voltage to perform proper function.
* D +
ǒ
Siliconix
S-56532—Rev. H, 19-Jan-98
Ǔ
5
DG428/429
Typical Characteristics
rDS(on) vs. VD and Supply Voltage
120
5 V
100
10 V
80
12 V
8 V
15 V
60
40
20 V
20
0
–20 –16 –12 –8
–4
0
4
8
12
16
rDS vs. VD and Temperature
100
rDS(on) – Drain-Source On-Resistance ( rDS(on) – Drain-Source On-Resistance ( 140
90
80
70
125_C
60
85_C
50
25_C
40
30
–55_C
20
–40_C
V+ = 15 V
V– = –15 V
10
0
20
–15
–10
VD – Drain Voltage (V)
Single Supply rDS(on) vs. VD and Supply
40
V+ = 7.5 V
120
10 V
12 V
80
15 V
20 V
20
10
IS(off)
0
ID(on), ID(off)
–10
40
–20
0
–30
0
4
8
12
16
20
–15
VD – Drain Voltage (V)
0
5
10
15
Switching Times vs. Power Supply Voltage
200
1 nA
IS (off)
Time (ns)
I S , I D – Leakage Current
–5
250
V+ = 15 V
V– = –15 V
VS, VD = 14 V
100 pA
–10
VS,VD – Source, Drain Voltage (V)
ID, IS Leakages vs. Temperature
10 nA
ID(on), ID(off)
tTRANS
150
tON(EN)
100
10 pA
tOFF(EN)
50
1 pA
0
–55 –35
–15
5
25
45
65
Temperature (C_)
6
15
V+ = 15 V
V– = –15 V
VS = –VD for ID(off)
VD = VS for ID(on)
30
160
10
ID, IS Leakage Currents vs. Analog Voltage
V– = 0 V
I S , I D – Current (pA)
rDS(on) – Drain-Source On-Resistance ( 200
–5
0
5
VD – Drain Voltage (V)
85
105 125
5
10
15
20
Supply Voltage (V)
Siliconix
S-56532—Rev. H, 19-Jan-98
DG428/429
Typical Characteristics (Cont’d)
Charge Injection vs. Analog Voltage
Switching Times vs. Single Supply
350
V– = 0 V
60
300
40
Q – Charge (pC)
Time (ms)
250
200
tTRANS
150
tON
V+ = 12 V
V– = 0 V
20
0
–20
100
–40
tOFF
50
V+ = 15 V
V– = –15 V
–60
0
5
10
15
–15
20
–10
–5
V+ – Positive Supply (V)
0
5
10
15
VS – Source Voltage (V)
Off-Isolation vs. Frequency
Supply Current vs. Switching Frequency
8
–140
I+
EN = 5 V
AX = 0 or 5 V
6
–120
Supply Current (ma)
4
OIRR (dB)
–100
–80
–60
–40
2
IGND
0
–2
–4
–6
I–
–20
–8
1k
10 k
100 k
1M
10 M
1k
10 k
f – Frequency (Hz)
100 k
1M
10 M
f – Frequency (Hz)
Switching Times vs. Temperature
Input Switching Threshold vs. Supply Voltage
200
3
V+ = 15 V
V– = –15 V
tTRANS
2.5
150
V in (V)
Time (nS)
2
tON
100
tOFF
1.5
1
50
0.5
0
–55 –35
0
–15
5
25
45
65
Temperature (C_)
Siliconix
S-56532—Rev. H, 19-Jan-98
85
105 125
0
”5
”10
”15
”20
VSUPPLY – Supply Voltage (V)
7
DG428/429
Schematic Diagram (Typical Channel)
V+
GND
VREF
D
EN
DO
QO
V+
V–
AX
Dn
Level
Shift
Qn
Decode/
Drive
S1
Latches
WR
CLK
RESET
V+
Sn
RS
V–
V–
Figure 1.
Timing Diagrams
3V
3V
50%
WR
50%
RS
0V
tRS
0V
tW
tS
3V
A0, A1, (A2)
EN
0V
tOFF(RS)
tH
VO
Switch
Output
20%
80%
80%
0V
Figure 2.
Figure 3.
Test Circuits
+15 V
+2.4 V
RS
EN
V+
Logic
Input
+5 V
All S and Da
tr <20 ns
tf <20 ns
3V
50%
0V
DG428
DG429
A0, A1, (A2)
GND
WR
50 Db , D
V–
–15 V
VO
300 35 pF
VS
Switch
Output
VO
0V
80%
tOPEN
Figure 4. Break-Before-Make
8
Siliconix
S-56532—Rev. H, 19-Jan-98
DG428/429
Test Circuits (Cont’d)
+15 V
V+
RS
EN
+2.4 V
S1
"10 V
S2 – S7
A0
DG428
A1
S8
A2
D
GND WR
V–
#10 V
50 Logic
Input
VO
300 –15 V
Switch
Output
VO
V+
RS
EN
50%
0V
35 pF
+15 V
+2.4 V
#10 V
S1b
VS1
A1
GND
WR
50 V–
Db
10%
VS8
tTRANS
S1 ON
#10 V
S4b
DG429
90%
0V
S1a – S4a, Da
S2b and S3b
A0
tr <20 ns
tf <20 ns
3V
tTRANS
S8 ON
VO
300 –15 V
35 pF
Figure 5. Transition Time
+15 V
+2.4 V
V+
RS
EN
A0
A1
A2
GND
–5V
S1
DG428
S2 – S8
V–
WR
50 VO
D
300 –15 V
35 pF
Logic
Input
tr <20 ns
tf <20 ns
3V
50%
0V
tON(EN)
tOFF(EN)
0V
+15 V
+2.4 V
Switch
Output
VO
V+
RS
EN
A0
A1
GND
50 –5V
S1b
DG429
VO
S1a – S4a, Da
S2b – S4b
WR
Db
V–
90%
VO
300 –15 V
35 pF
Figure 6. Enable tON/tOFF Time
Siliconix
S-56532—Rev. H, 19-Jan-98
9
DG428/429
Test Circuits (Cont’d)
+15 V
V+
EN
S1 or S1b
A0, A1, (A2)
Remaining
Switches
RS
+2.4 V
+5 V
3 V
WR
50%
0 V
VO
DG428
DG429 Db, D
WR
GND
V–
VO
20%
35 pF
300 W
tON(WR)
Switch
Output
0V
–15 V
Figure 7. Write Turn-On Time tON(WR)
+15 V
+2.4 V
V+
EN
S1 or S1b
A0, A1, (A2)
Remaining
Switches
RS
GND
3 V
+5 V
RS
tOFF(RS)
DG42
DG429 Db, D
VO
V–
WR
50%
0 V
300 W
35 pF
VO
80%
Switch
Output
0V
–15 V
Figure 8. Reset Turn-Off Time tOFF(RS)
+15 V
V+
A0, A1, (A2)
Rg
S
RS
D
IN
Vg
VO
OFF
EN
ON
OFF
DVO
VO
CL
1 nF
3V
GND
2.4 V
WR
V–
DVO is the measured voltage error due to
charge injection. The charge in coulombs is
Q = CL x DVO
–15 V
Figure 9. Charge Injection
10
Siliconix
S-56532—Rev. H, 19-Jan-98
DG428/429
Detailed Description
Applications
The internal structure of the DG428/DG429 includes a
5-V logic interface with input protection circuitry
followed by a latch, level shifter, decoder and finally the
switch constructed with parallel n- and p-channel
MOSFETs (see Figure 1).
Bus Interfacing
The input protection on the logic lines A0, A1, A2, EN and
control lines WR, RS shown in Figure 1 minimizes
susceptibility to ESD that may be encountered during
handling and operational transients.
The logic interface is a CMOS logic input with its supply
voltage from an internal +5 V reference voltage. The
output of the input inverter feeds the data input of a D type
latch. The level sensitive D latch continuously places the
DX input signal on the QX output when the WR input is
low, resulting in transparent latch operation. As soon as
WR returns high the latch holds the data last present on
the Dn input, subject to the “Minimum Input Timing
Requirements” table.
Following the latches the Qn signals are level shifted and
decoded to provide proper drive levels for the CMOS
switches. This level shifting ensures full on/off switch
operation for any analog signal level between the V+ and
V– supply rails.
The EN pin is used to enable the address latches during
the WR pulse. It can be hard wired to the logic supply or
to V+ if one of the channels will always be used (except
during a reset) or it can be tied to address decoding
circuitry for memory mapped operation. The RS pin is
used as a master reset. All latches are cleared regardless
of the state of any other latch or control line. The WR pin
is used to transfer the state of the address control lines to
their latches, except during a reset or when EN is low (see
Truth Tables).
Siliconix
S-56532—Rev. H, 19-Jan-98
The DG428/DG429 minimize the amount of interface
hardware between a microprocessor system bus and the
analog system being controlled or measured. The internal
TTL compatible latches give these multiplexers write-only
memory, that is, they can be programmed to stay in a
particular switch state (e.g., switch 1 on) until the
microprocessor determines it is necessary to turn different
switches on or turn all switches off (see Figure 10).
The input latches become transparent when WR is held
low; therefore, these multiplexers operate by direct
command of the coded switch state on A2, A1, A0. In this
mode the DG428 is identical to the popular DG408. The
same is true of the DG429 versus the popular DG409.
During system power-up, RS would be low, maintaining
all eight switches in the off state. After RS returned high
the DG428 maintains all switches in the off state.
When the system program performs a write operation to
the address assigned to the DG428, the address decoder
provides a CS active low signal which is gated with the
WRITE (WR) control signal. At this time the data on the
DATA BUS (that will determine which switch to close) is
stabilizing. When the WR signal returns to the high state,
(positive edge) the input latches of the DG428 save the
data from the DATA BUS. The coded information in the
A0, A1, A2 and EN latches is decoded and the appropriate
switch is turned on.
The EN latch allows all switches to be turned off under
program control. This becomes useful when two or more
DG428s are cascaded to build 16-line and larger
multiplexers.
11
DG428/429
Applications (Cont’d)
+15 V
V+
Data Bus
S1
±15 V
Analog
Inputs
A0, A1, A2, EN
DG428
Processor
System
Bus
RS
RESET
+5 V
S8
WRITE
WR
D
Address
Bus
V–
Analog
Output
Address
Decoder
– 15 V
Figure 10. Bus Interface
12
Siliconix
S-56532—Rev. H, 19-Jan-98