ETC DG406DN

DG406/407
Vishay Siliconix
16-Ch/Dual 8-Ch High-Performance CMOS Analog Multiplexers
Low On-Resistance—rDS(on): 50 Low Charge Injection—Q: 15 pC
Fast Transition Time—tTRANS: 200 ns
Low Power: 0.2 mW
Single Supply Capability
44-V Supply Max Rating
Higher Accuracy
Reduced Glitching
Improved Data Throughput
Reduced Power Consumption
Increased Ruggedness
Wide Supply Ranges: 5 V to 20 V
Data Acquisition Systems
Audio Signal Routing
Medical Instrumentation
ATE Systems
Battery Powered Systems
High-Rel Systems
Single Supply Systems
The DG406 is a 16-channel single-ended analog multiplexer
designed to connect one of sixteen inputs to a common output as
determined by a 4-bit binary address. The DG407 selects one of
eight differential inputs to a common differential output.
Break-before-make switching action protects against momentary
shorting of inputs.
An on channel conducts current equally well in both directions. In
the off state each channel blocks voltages up to the power supply
rails. An enable (EN) function allows the user to reset the
multiplexer/demultiplexer to all switches off for stacking several
devices. All control inputs, address (Ax) and enable (EN) are TTL
compatible over the full specified operating temperature range.
Applications for the DG406/407 include high speed data
acquisition, audio signal switching and routing, ATE systems, and
avionics. High performance and low power dissipation make
them ideal for battery operated and remote instrumentation
applications. For additional application information order Faxback
document numbers 70601 and 70604.
Designed in the 44-V silicon-gate CMOS process, the absolute
maximum voltage rating is extended to 44 volts, allowing
operation with 20-V supplies. Additionally single (12-V) supply
operation is allowed. An epitaxial layer prevents latchup.
For applications information please request FaxBack documents
70601 and 70604.
DG406
DG407
Dual-In-Line and SOIC Wide-Body
V+
NC
1
2
Dual-In-Line and SOIC Wide-Body
28
D
V+
1
28
Da
27
V–
Db
2
27
V–
NC
3
26
S8a
NC
3
26
S8
S16
4
25
S7
S8b
4
25
S7a
S7b
5
24
S6a
S15
5
24
S6
S14
6
23
S5
S6b
6
23
S5a
S5b
7
22
S4a
S13
7
22
S4
S12
8
21
S3
S4b
8
21
S3a
S3b
9
20
S2a
S11
9
20
S2
S10
10
19
S1
S2b
10
19
S1a
18
EN
S1b
11
18
EN
17
A0
GND
12
NC
NC
S9
11
GND
12
Decoders/Drivers
NC
13
16
A1
A3
14
15
A2
Top View
Document Number: 70061
S-00399—Rev. H, 13-Sep-99
17
A0
13
16
A1
14
15
A2
Decoders/Drivers
Top View
www.vishay.com FaxBack 408-970-5600
5-1
DG406/407
Vishay Siliconix
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION
Da
S 8a
V+
D
28 27 26
Db
V+
1
NC
NC
2
S 8b
NC
3
S8
S 16
4
V–
PLCC and LCC
DG407
4
3
2
1
28 27 26
V–
PLCC and LCC
DG406
S15
5
25
S7
S7b
5
25
S7a
S14
6
24
S6
S6b
6
24
S6a
S5b
7
23
S5a
S13
7
23
S5
S12
8
22
S4
S4b
8
22
S4a
S11
9
21
S3
S3b
9
21
S3a
S10
10
20
S2
S2b
10
20
S2a
S9
11
19
S1
S1b
11
19
S1a
EN
A0
A1
A2
NC
NC
GND
EN
A0
NC
A1
12 13 14 15 16 17 18
A2
12 13 14 15 16 17 18
A3
Decoders/Drivers
GND
Decoders/Drivers
Top View
Top View
TRUTH TABLE Ċ DG406
TRUTH TABLE Ċ DG407
A3
A2
A1
A0
EN
On Switch
A2
A1
A0
EN
On Switch Pair
X
X
X
X
0
None
X
X
X
0
None
0
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
2
0
0
1
1
2
0
0
1
0
1
3
0
1
0
1
3
0
0
1
1
1
4
0
1
1
1
4
0
1
0
0
1
5
1
0
0
1
5
0
1
0
1
1
6
1
0
1
1
6
0
1
1
0
1
7
1
1
0
1
7
0
1
1
1
1
8
1
1
1
1
8
1
0
0
0
1
9
1
0
0
1
1
10
1
0
1
0
1
11
1
0
1
1
1
12
1
1
0
0
1
13
1
1
0
1
1
14
1
1
1
0
1
15
1
1
1
1
1
16
ORDERING INFORMATION Ċ DG406
Temp Range
–40
40 to 85_C
85 C
Package
DG406DJ
28-Pin PLCC
DG406DN
28-Pin Widebody SOIC
DG406DW
28-Pin CerDIP
DG406AK/883,
5962-9562301QXA
LCC-28
DG406AZ/883,
5962-9562301Q3A
–55 to 125_C
www.vishay.com S FaxBack 408-970-5600
5-2
Part Number
28-Pin Plastic DIP
Logic “0” =
1
=
Logic “1”
X = Don’t Care
VAL v 0.8 V
VAH w 2.4 V
ORDERING INFORMATION Ċ DG407
Temp Range
–40
40 to 85_C
85 C
Package
Part Number
28-Pin Plastic DIP
DG407DJ
28-Pin PLCC
DG407DN
28-Pin Widebody SOIC
DG407DW
28-Pin CerDIP
DG407AK/883’
5962-9562302QXA
LCC-28
DG407AZ/883
5962-9562302Q3A
–55 to 125_C
Document Number: 70061
S-00399—Rev. H, 13-Sep-99
DG406/407
Vishay Siliconix
ABSOLUTE MAXIMUM RATINGS
Power Dissipation (Package)b
28-Pin Plastic DIPc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 mW
28-Pin CerDIPd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 W
28-Pin Plastic PLCCc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 mW
LCC-28e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.35 W
28-Pin Widebody SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 mW
Voltages Referenced to V–
V+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 V
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 V
Digital Inputsa, VS, VD . . . . . . . . . . . . . . . . . . . . . . . . (V–) –2 V to (V+) +2 V or
20 mA, whichever occurs first
Notes:
a. Signals on SX, DX or INX exceeding V+ or V– will be clamped by internal
diodes. Limit forward diode current to maximum current ratings.
b. All leads soldered or welded to PC board.
c. Derate 6 mW/_C above 75_C
d. Derate 12 mW/_C above 75_C
e. Derate 13.5 mW/_C above 75_C
Current (Any Terminal,) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle Max) . . . . . . . . . . . . . . . . . . . . . . . . 100 mA
Storage Temperature
(AK, AZ Suffix) . . . . . . . . . . . . . . –65 to 150_C
(DJ, DN Suffix) . . . . . . . . . . . . . . –65 to 125_C
SPECIFICATIONSa
Test Conditions
Unless Otherwise Specified
Parameter
A Suffix
D Suffix
–55 to 125_C
–40 to 85_C
V+ = 15 V, V– = –15 V
VAL = 0.8 V, VAH = 2.4 Vf
Tempb
rDS(on)
VD = "10 V, IS = –10 mA
Sequence Each Switch On
Room
Full
50
DrDS(on)
VD = "10 V
Room
5
Room
Full
0.01
–0.5
–50
0.5
50
–0.5
–5
0.5
5
DG406
Room
Full
0.04
–1
–200
1
200
–1
–40
1
40
DG407
Room
Full
0.04
–1
–100
1
100
–1
–20
1
20
DG406
Room
Full
0.04
–1
–200
1
200
–1
–40
1
40
DG407
Room
Full
0.04
–1
–100
1
100
–1
–20
1
20
Symbol
Typc
Mind
Maxd
Mind
15
–15
Maxd
Unit
Analog Switch
Analog Signal Rangee
VANALOG
Drain-Source On-Resistance
rDS(on) Matching Between
Channelsg
Source Off
Leakage Current
Drain Off
Leakage
Current
L k
C
t
Drain On
L k
Leakage
Current
C
t
Full
IS(off)
ID(off)
ID(on)
VEN = 0 V
VD = "10 V
VS = #10 V
VS = VD = "10 V
Sequence Each
Switch On
–15
100
125
15
V
100
125
W
%
nA
A
Digital Control
Logic High Input Voltage
VINH
Full
Logic Low Input Voltage
VINL
Full
2.4
2.4
Logic High Input Current
IAH
VA = 2.4 V, 15 V
Full
–1
1
–1
1
Logic Low Input Current
IAL
VEN = 0 V, 2.4 V, VA = 0 V
Full
–1
1
–1
1
Logic Input Capacitance
Cin
f = 1 MHz
Room
7
Transition Time
tTRANS
See Figure 2
Room
Full
200
Break-Before-Make Interval
tOPEN
See Figure 4
Room
Full
50
Enable Turn-On Time
tON(EN)
Room
Full
150
200
400
200
400
Enable Turn-Off Time
tOFF(EN)
Room
Full
70
150
300
150
300
0.8
0.8
V
mA
pF
Dynamic Characteristics
See Figure 3
350
450
25
10
350
450
25
10
ns
Q
CL = 1 nF, VS = 0 V, Rs = 0 W
Room
15
pC
Off Isolationh
OIRR
VEN = 0 V, RL = 1 kW
f = 100 kHz
Room
–69
dB
Source Off Capacitance
CS(off)
VEN = 0 V, VS = 0 V, f = 1 MHz
Room
8
Drain Off Capacitance
CD(off)
Room
130
Charge Injection
VEN = 0 V,
V, VD = 0 V
f = 1 MHz
MH
Drain On Capacitance
Document Number: 70061
S-00399—Rev. H, 13-Sep-99
CD(on)
DG407
Room
65
DG406
Room
140
DG407
Room
70
pF
F
www.vishay.com S FaxBack 408-970-5600
5-3
DG406/407
Vishay Siliconix
Test Conditions
Unless Otherwise Specified
Parameter
Symbol
V+ = 15 V, V– = –15 V
VAL = 0.8 V, VAH = 2.4 Vf
Tempb
Typc
Room
Full
13
A Suffix
D Suffix
–55 to 125_C
–40 to 85_C
Mind
Maxd
Mind
Maxd
Unit
Power Supplies
Positive Supply Current
I+
Negative Supply Current
I–
Room
Full
–0.01
Positive Supply Current
I+
Room
Full
50
Negative Supply Current
I–
Room
Full
–0.01
VEN = VA = 0 or 5 V
VEN = 2.4 V, VA = 0 V
30
75
–1
–10
30
75
–1
–10
500
900
–20
–20
500
700
mA
A
–20
–20
Test Conditions
Unless Otherwise Specified
Parameter
Symbol
V = 12 V
V+
V, V
V– = 0 V
VAL = 0.8 V, VAH = 2.4 Vf
Tempb
Typc
A Suffix
D Suffix
–55 to 125_C
–40 to 85_C
Mind Maxd
Mind
Maxd
Unit
0
12
V
120
W
Analog Switch
Analog Signal Rangee
Drain-Source
On-Resistance
rDS(on) Matching Between
Channelsg
VANALOG
rDS(on)
DrDS(on)
Full
Room
90
Room
5
Room
0.01
DG406
Room
0.04
DG407
Room
0.04
DG406
Room
0.04
DG407
Room
0.04
VD = 3 V,, 10 V,, IS = – 1 mA
S
Sequence
E h Switch
Each
S it h On
O
Source Off
Leakage Current
IS(off)
Drain Off
L k
Leakage
Current
C
t
ID(off)
VEN = 0 V
VD = 10 V or 0.5
05V
VS = 0.5 V or 10 V
Drain On
L k
Leakage
Current
C
t
ID(on)
VS = VD = 10 V
Sequence Each
S
E h Switch
S it h On
O
0
12
120
%
nA
A
Dynamic Characteristics
Switching Time of Multiplexer
tTRANS
VS1 = 8 V, VS8 = 0 V, VIN = 2.4 V
Room
300
450
450
Enable Turn-On Time
tON(EN)
Room
250
600
600
Enable Turn-Off Time
tOFF(EN)
VINH = 2.4 V,, VINL = 0 V
VS1 = 5 V
Room
150
300
300
Q
CL = 1 nF, VS= 6 V, RS = 0
Room
20
Room
Full
13
Room
Full
–0.01
Charge Injection
ns
pC
Power Supplies
Positive Supply Current
I+
Negative Supply Current
I–
VEN = 0 V or 5 V
V, VA = 0 V or 5 V
30
75
–20
–20
30
75
–20
–20
mA
Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room = 25_C, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f.
VIN = input voltage to perform proper function.
g. DrDS(on) = rDS(on) MAX – rDS(on) MIN.
h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.
www.vishay.com S FaxBack 408-970-5600
5-4
Document Number: 70061
S-00399—Rev. H, 13-Sep-99
DG406/407
Vishay Siliconix
_ rDS(on) vs. VD and Supply
rDS(on) vs. VD and Temperature
160
80
120
r DS(on)– On-Resistance ( )
r DS(on)– On-Resistance ( )
70
5 V
80
8 V
10 V
12 V
15 V
40
20 V
125_C
60
85_C
50
25_C
0_C
40
30
–40_C
20
–55_C
10
0
–15
0
–20
–12
–4
4
VD – Drain Voltage (V)
12
V+ = 15 V
V– = –15 V
20
–10
–5
0
5
VD – Drain Voltage (V)
10
15
ID , IS Leakage Currents vs. Analog Voltage
rDS(on) vs. VD and Supply
120
V+ = 7.5 V
80
200
I D, I S – Current (pA)
r DS(on)– On-Resistance ( )
V+ = 15 V
V– = –15 V
VS = –VD for ID(off)
VD = VS(open) for ID(on)
V– = 0 V
240
160
10 V
120
12 V
15 V
80
20 V
22 V
40
IS(off)
0
DG406 ID(on), ID(off)
–40
DG407 ID(on), ID(off)
–80
40
–120
–15
0
0
4
8
12
VD – Drain Voltage (V)
16
20
ID , IS Leakages vs. Temperature
15
350
V+ = 15 V
V– = –15 V
VD = ”14 V
300
tTRANS
250
1 nA
ID(on), ID(off)
Time (ns)
I D, I S – Current
–5
0
5
10
VS , VD – Source Drain Voltage (V)
Switching Times vs. Bipolar Supplies
100 nA
10 nA
–10
100 pA
200
tON(EN)
150
IS(off)
10 pA
100
tOFF(EN)
1 pA
0.1 pA
–55
50
0
–35 –15
5
25
45
65
Temperature (_C)
Document Number: 70061
S-00399—Rev. H, 13-Sep-99
85
105
125
5
10
15
20
VSUPPLY – Supply Voltage (V)
www.vishay.com S FaxBack 408-970-5600
5-5
DG406/407
Vishay Siliconix
_ Switching Times vs. Single Supply
Charge Injection vs. Analog Voltage
70
700
60
500
50
tTRANS
400
Q (pC)
Time (ns)
V– = 0 V
600
300
40
V+ = 12 V,
V– = 0 V
30
tON(EN)
200
V+ = 15 V,
V– = –15 V
20
100
10
tOFF(EN)
0
5
10
15
0
–15
20
–10
–5
V+ – Supply Voltage (V)
0
5
15
VS – Source Voltage (V)
Off-Isolation vs. Frequency
Supply Currents vs. Switching Frequency
–140
10
EN = 5 V
AX = 0 or 5 V
8
–120
I+
6
–100
4
I – Current (mA)
ISOL (dB)
10
–80
–60
2
0
IGND
–2
–4
–40
I–
–6
–20
–8
0
–10
100
1k
10 k
100 k
1M
10 M
10
100
1k
f – Frequency (Hz)
tON/tOFF vs. Temperature
10 M
Switching Threshold vs. Supply Voltage
V+ = 15 V
V– = –15 V
ÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇ
2
tTRANS
V TH (V)
Time (ns)
1M
3
220
tON(EN)
180
140
1
100
tOFF(EN)
0
60
–55 –35 –15
5
25
45
65
Temperature (_C)
www.vishay.com S FaxBack 408-970-5600
5-6
100 k
f – Frequency (Hz)
300
260
10 k
85
105
125
0
5
10
15
20
VSUPPLY – Supply Voltage (V)
Document Number: 70061
S-00399—Rev. H, 13-Sep-99
DG406/407
Vishay Siliconix
V+
VREF
GND
D
A0
V+
Level
Shift
AX
V–
Decode/
Drive
S1
V+
EN
Sn
V–
FIGURE 1.
+15 V
+2.4 V
V+
EN
A2
A1
"10 V
S1
A3
S2 – S15
DG406
#10 V
S16
A0
VO
D
GND
Logic
Input
V–
tr <20 ns
tf <20 ns
3V
50%
0V
50 35 pF
300 –15 V
VS1
90%
Switch
Output
+15 V
+2.4 V
V+
EN
A2
VO
S1b
"10 V
0V
90%
VS8
*
DG407
S8b
A1
A0
tTRANS
#10 V
S1 ON
Db
GND
tTRANS
S8 ON
VO
V–
50 300 35 pF
–15 V
* = S1a – S8a, S2b – S7b, Da
FIGURE 2. Transition Time
Document Number: 70061
S-00399—Rev. H, 13-Sep-99
www.vishay.com FaxBack 408-970-5600
5-7
DG406/407
Vishay Siliconix
+15 V
V+
A3
A1
A0
–5 V
S1
A2
S2 – S16
DG406
VO
D
EN
GND
V–
300 50 Logic
Input
35 pF
–15 V
tr <20 ns
tf <20 ns
3V
50%
0V
tON(EN)
+15 V
V+
A2
S1b
S1a – S8a
S2b – S8b
A1
A0
tOFF(EN)
0V
Switch
Output
–5 V
VO
90%
90%
VO
DG407
Da and Db
EN
GND
VO
V–
35 pF
50 300 –15 V
FIGURE 3. Enable Switching Time
+15 V
Logic
Input
V+
EN
+2.4 V
All S and Da
A3
A2
A1
+5 V
tr <20 ns
tf <20 ns
3V
50%
0V
DG406
DG407
A0
GND
80%
Switch
Output
V–
50 VS
VO
D,Db
300 35 pF
VO
–15 V
0V
tOPEN
FIGURE 4. Break-Before-Make Interval
www.vishay.com FaxBack 408-970-5600
5-8
Document Number: 70061
S-00399—Rev. H, 13-Sep-99
DG406/407
Vishay Siliconix
Sampling speed is limited by two consecutive events: the
transition time of the multiplexer, and the settling time of the
sampled signal at the output.
tTRANS is given on the data sheet. Settling time at the load
depends on several parameters: rDS(on) of the multiplexer,
source impedance, multiplexer and load capacitances, charge
injection of the multiplexer and accuracy desired.
The settling time for the multiplexer alone can be derived from
the model shown in Figure 5. Assuming a low impedance
signal source like that presented by an op amp or a buffer
amplifier, the settling time of the RC network for a given
accuracy is equal to nt:
0.25
8
6
0.012
12
9
0.0017
15
11
For the DG406 then, at room temp and for 12-bit accuracy,
using the maximum limits:
fs +
1
16 (9 x 100 W x 10–12F) ) 300 x 10–12 s
(2)
or
fs = 694 kHz
(3)
From the sampling theorem, to properly recover the original
signal, the sampling frequency should be more than twice the
maximum component frequency of the original signal. This
assumes perfect bandlimiting. In a real application sampling at
three to four times the filter cutoff frequency is a good practice.
Therefore from equation 2 above:
fc =
1
4
x fs = 173 kHz
(4)
rDS(on)
VOUT
From this we can see that the DG406 can be used to sample
16 different signals whose maximum component frequency
can be as high as 173 kHz. If for example, two channels are
used to double sample the same incoming signal then its cutoff
frequency can be doubled.
RS = 0
CD(on)
FIGURE 5. Simplified Model of One Multiplexer Channel
The maximum sampling frequency of the multiplexer is:
1
fs =
(1)
N (tSETTLING + tTRANS)
where N = number of channels to scan
tSETTLING = nt = n x rDS(on) x CD(on)
To
Sensor 1
To
Sensor 8
Analog
Multiplexer
The block diagram shown in Figure 6 illustrates a typical data
acquisition front end suitable for low-level analog signals.
Differential multiplexing of small signals is preferred since this
method helps to reject any common mode noise. This is
especially important when the sensors are located at a
distance and it may eliminate the need for individual amplifiers.
A low rDS(on), low leakage multiplexer like the DG407 helps to
reduce measurement errors. The low power dissipation of the
DG407 minimizes on-chip thermal gradients which can cause
errors due to temperature mismatch along the parasitic
thermocouple paths. Please refer to Application Note AN203
for additional information.
Inst
Amp
DG407
S/H
12-Bit
A/D
Converter
Controller
FIGURE 6. Measuring low-level analog signals is more accurate when using a differential multiplexing technique.
Document Number: 70061
S-00399—Rev. H, 13-Sep-99
www.vishay.com FaxBack 408-970-5600
5-9