PD - 9.1075 IRGPC30K INSULATED GATE BIPOLAR TRANSISTOR Features Short Circuit Rated UltraFast IGBT C • Short circuit rated - 10µs @ 125°C, VGE = 15V • Switching-loss rating includes all "tail" losses • Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve VCES = 600V VCE(sat) ≤ 3.8V G @VGE = 15V, IC = 14A E n-channel Description Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications. These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability. TO -2 4 7 AC Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM tsc VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Short Circuit Withstand Time Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 600 23 14 46 46 10 ±20 10 100 42 -55 to +150 V A µs V mJ W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. — — — — — 0.24 — 6 (0.21) 1.2 — 40 — Units °C/W g (oz) IRGPC30K Electrical Characteristics @ T J = 25°C (unless otherwise specified) V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe I CES I GES Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown Voltage 600 — — V Emitter-to-Collector Breakdown Voltage 20 — — V Temperature Coeff. of Breakdown Voltage — 0.30 — V/°C Collector-to-Emitter Saturation Voltage — 2.5 3.8 — 3.3 — V — 2.5 — Gate Threshold Voltage 3.0 — 5.5 Temperature Coeff. of Threshold Voltage — -13 — mV/°C Forward Transconductance 3.3 6.5 — S Zero Gate Voltage Collector Current — — 600 µA — — 1100 Gate-to-Emitter Leakage Current — — ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0A VGE = 0V, IC = 1.0mA IC = 14A VGE = 15V IC = 23A See Fig. 2, 5 IC = 14A, TJ = 150°C VCE = VGE , IC = 250µA VCE = VGE , IC = 250µA VCE = 100V, IC = 14A V GE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units Conditions — 39 58 IC = 14A — 8.7 13 nC VCC = 400V See Fig. 8 — 15 23 VGE = 15V — 31 — TJ = 25°C — 23 — ns IC = 14A, VCC = 480V — 100 150 VGE = 15V, RG = 23Ω — 84 130 Energy losses include "tail" — 0.3 — — 0.3 — mJ See Fig. 9, 10, 11, 14 — 0.6 0.9 10 — — µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 23Ω, VCPK < 500V — 30 — TJ = 150°C, — 23 — ns IC = 14A, VCC = 480V — 170 — VGE = 15V, RG = 23Ω — 170 — Energy losses include "tail" — 1.4 — mJ See Fig. 10, 14 — 13 — nH Measured 5mm from package — 740 — VGE = 0V — 92 — pF VCC = 30V See Fig. 7 — 9.4 — ƒ = 1.0MHz Notes: Repetitive rating; VGE=20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC=80%(VCES), VGE=20V, L=10µH, RG= 23Ω, ( See fig. 13a ) Repetitive rating; pulse width limited by maximum junction temperature. Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. IRGPC30K 40 For both: 30 Load Current (A) Triangular wave: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 24W Clamp voltage: 80% of rated Square wave: 60% of rated voltage 20 10 Ideal diodes A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK ) 100 TJ = 25°C TJ = 150°C 10 1 VGE = 15V 20µs PULSE WIDTH A 0.1 0.1 1 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics 10 IC , Collector-to-Emitter Current (A) IC , Collector-to-Emitter Current (A) 100 TJ = 150°C 10 TJ = 25°C VCC = 100V 5µs PULSE WIDTH A 1 5 10 15 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 20 IRGPC30K 6.0 VGE = 15V VCE , Collector-to-Emitter Voltage (V) Maximum DC Collector Current (A) 25 20 15 10 5 A 0 25 50 75 100 125 VGE = 15V 80µs PULSE WIDTH 5.0 I C = 28A 4.0 3.0 I C = 14A 2.0 I C = 7.0A 1.0 0.0 -60 150 TC , Case Temperature (°C) A -40 -20 0 20 40 60 80 100 120 140 160 TC, Case Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 PDM 0.10 0.1 0.01 0.00001 0.05 0.02 0.01 t 1 t SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty fact or D = t 1 /t 2 2 2. Peak TJ = PDM x Z thJC + T C 0.0001 0.001 0.01 0.1 1 t 1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 10 IRGPC30K 1400 VGE , Gate-to-Emitter Voltage (V) 1200 C, Capacitance (pF) 20 V GE = 0V, f = 1MHz Cies = Cge + C gc , Cce SHORTED Cres = C gc Coes = C ce + C gc 1000 Cies 800 C oes 600 400 Cres 200 A 0 1 10 VCE = 400V I C = 14A 16 12 8 4 A 0 0 100 10 VCE, Collector-to-Emitter Voltage (V) VCC VGE TC IC 0.76 30 40 Qg , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.80 20 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 10 = 480V = 15V = 25°C = 14A RG = 23Ω V GE = 15V V CC = 480V I C = 28A 0.72 I C = 14A 1 0.68 I C = 7.0A 0.64 A 0.60 0 10 20 30 40 50 60 R G , Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance 0.1 -60 -40 -20 0 20 40 60 80 A 100 120 140 160 TC, Case Temperature (°C) Fig. 10 - Typical Switching Losses vs. Case Temperature IRGPC30K RG TC V CC V GE 100 = 23Ω = 150°C = 480V = 15V IC , Collector-to-Emitter Current (A) 4.0 3.0 2.0 1.0 A 0.0 0 10 20 VGE = 20V TJ = 125°C SAFE OPERATING AREA 10 A 1 30 1 10 I C , Collector-to-Emitter Current (A) VCE, Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 3.65 (.143) 3.55 (.140) 0.25 (.010) M D B M 15.90 ( .626) 15.30 ( .602) -B- -A5.50 (.217) 20.30 (.800) 19.70 (.775) 2X 1 2 -D- 5.30 ( .209) 4.70 ( .185) 2.50 (.089) 1.50 (.059) 4 5.50 (.217) 4.50 (.177) -C- * 2.40 (.094) 2.00 (.079) 2X 5.45 (.215) 2X 4.30 (.170) 3.70 (.145) 1.40 (.056) 3X 1.00 (.039) 0.25 ( .010) M 3.40 (.133) 3.00 (.118) NO TES: 1 DIMENSIO NS & T OLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 DIMENSIO NS ARE SHOW N MILLIMETE RS (INCHES). 4 CONFO RM S TO JEDEC OUTLINE T O-247AC. LEAD ASSIGNMENT S 1 - GAT E 2 - CO LLECTO R 3 - EMIT TER 4 - CO LLECTO R 3 14.80 (.583) 14.20 (.559) 100 NGE R LEADED (20m m) * LO VERS ION AVAILAB LE (TO-247AD) C A S 0.80 ( .031) 3X 0.40 ( .016) 2.60 (.102) 2.20 (.087) CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P) Dimensions in Millimeters and (Inches) TO ORDE R ADD "-E " SUFF IX TO PART NUMBER 1000 IRGPC30K L D.U.T. VC * 50V RL = 0 - 480V 1000V 480V 4 X IC@25°C 480µF 960V * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L Driver* D.U.T. VC Fig. 14a - Switching Loss Test Circuit 50V 1000V * Driver same type as D.U.T., VC = 480V 90% VC 10% Fig. 14b - Switching Loss Waveforms 90% t d(off) 10% I C 5% tf tr t d(on) t=5µs Eon Eoff Ets = (Eon +Eoff )