ETC IRGPC30K

PD - 9.1075
IRGPC30K
INSULATED GATE BIPOLAR TRANSISTOR
Features
Short Circuit Rated
UltraFast IGBT
C
• Short circuit rated - 10µs @ 125°C, VGE = 15V
• Switching-loss rating includes all "tail" losses
• Optimized for high operating frequency (over
5kHz)
See Fig. 1 for Current vs. Frequency curve
VCES = 600V
VCE(sat) ≤ 3.8V
G
@VGE = 15V, IC = 14A
E
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have
higher usable current densities than comparable bipolar transistors, while at
the same time having simpler gate-drive requirements of the familiar power
MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications.
These new short circuit rated devices are especially suited for motor control
and other applications requiring short circuit withstand capability.
TO -2 4 7 AC
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
tsc
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy ƒ
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
23
14
46
46
10
±20
10
100
42
-55 to +150
V
A
µs
V
mJ
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
Junction-to-Case
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
—
—
—
—
—
0.24
—
6 (0.21)
1.2
—
40
—
Units
°C/W
g (oz)
IRGPC30K
Electrical Characteristics @ T J = 25°C (unless otherwise specified)
V(BR)CES
V(BR)ECS
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
I CES
I GES
Parameter
Min. Typ. Max. Units
Collector-to-Emitter Breakdown Voltage
600
—
—
V
Emitter-to-Collector Breakdown Voltage „ 20
—
—
V
Temperature Coeff. of Breakdown Voltage
— 0.30 —
V/°C
Collector-to-Emitter Saturation Voltage
—
2.5 3.8
—
3.3
—
V
—
2.5
—
Gate Threshold Voltage
3.0
—
5.5
Temperature Coeff. of Threshold Voltage —
-13
— mV/°C
Forward Transconductance …
3.3
6.5
—
S
Zero Gate Voltage Collector Current
—
—
600
µA
—
— 1100
Gate-to-Emitter Leakage Current
—
— ±100 nA
Conditions
VGE = 0V, IC = 250µA
VGE = 0V, IC = 1.0A
VGE = 0V, IC = 1.0mA
IC = 14A
VGE = 15V
IC = 23A
See Fig. 2, 5
IC = 14A, TJ = 150°C
VCE = VGE , IC = 250µA
VCE = VGE , IC = 250µA
VCE = 100V, IC = 14A
V GE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
Conditions
—
39
58
IC = 14A
—
8.7
13
nC
VCC = 400V
See Fig. 8
—
15
23
VGE = 15V
—
31
—
TJ = 25°C
—
23
—
ns
IC = 14A, VCC = 480V
—
100 150
VGE = 15V, RG = 23Ω
—
84 130
Energy losses include "tail"
—
0.3
—
—
0.3
—
mJ
See Fig. 9, 10, 11, 14
—
0.6
0.9
10
—
—
µs
VCC = 360V, TJ = 125°C
VGE = 15V, RG = 23Ω, VCPK < 500V
—
30
—
TJ = 150°C,
—
23
—
ns
IC = 14A, VCC = 480V
—
170
—
VGE = 15V, RG = 23Ω
—
170
—
Energy losses include "tail"
—
1.4
—
mJ
See Fig. 10, 14
—
13
—
nH
Measured 5mm from package
—
740
—
VGE = 0V
—
92
—
pF
VCC = 30V
See Fig. 7
—
9.4
—
ƒ = 1.0MHz
Notes:
 Repetitive rating; VGE=20V, pulse width
limited by max. junction temperature.
( See fig. 13b )
‚ VCC=80%(VCES), VGE=20V, L=10µH,
RG= 23Ω, ( See fig. 13a )
ƒ Repetitive rating; pulse width limited
by maximum junction temperature.
„ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
… Pulse width 5.0µs,
single shot.
IRGPC30K
40
For both:
30
Load Current (A)
Triangular wave:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 24W
Clamp voltage:
80% of rated
Square wave:
60% of rated
voltage
20
10
Ideal diodes
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK )
100
TJ = 25°C
TJ = 150°C
10
1
VGE = 15V
20µs PULSE WIDTH A
0.1
0.1
1
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
10
IC , Collector-to-Emitter Current (A)
IC , Collector-to-Emitter Current (A)
100
TJ = 150°C
10
TJ = 25°C
VCC = 100V
5µs PULSE WIDTH A
1
5
10
15
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
20
IRGPC30K
6.0
VGE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
25
20
15
10
5
A
0
25
50
75
100
125
VGE = 15V
80µs PULSE WIDTH
5.0
I C = 28A
4.0
3.0
I C = 14A
2.0
I C = 7.0A
1.0
0.0
-60
150
TC , Case Temperature (°C)
A
-40
-20
0
20
40
60
80
100 120 140 160
TC, Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs.
Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
PDM
0.10
0.1
0.01
0.00001
0.05
0.02
0.01
t
1
t
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty fact or D = t
1
/t
2
2
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
10
IRGPC30K
1400
VGE , Gate-to-Emitter Voltage (V)
1200
C, Capacitance (pF)
20
V GE = 0V,
f = 1MHz
Cies = Cge + C gc , Cce SHORTED
Cres = C gc
Coes = C ce + C gc
1000
Cies
800
C oes
600
400
Cres
200
A
0
1
10
VCE = 400V
I C = 14A
16
12
8
4
A
0
0
100
10
VCE, Collector-to-Emitter Voltage (V)
VCC
VGE
TC
IC
0.76
30
40
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0.80
20
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
10
= 480V
= 15V
= 25°C
= 14A
RG = 23Ω
V GE = 15V
V CC = 480V
I C = 28A
0.72
I C = 14A
1
0.68
I C = 7.0A
0.64
A
0.60
0
10
20
30
40
50
60
R G , Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
0.1
-60
-40
-20
0
20
40
60
80
A
100 120 140 160
TC, Case Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Case Temperature
IRGPC30K
RG
TC
V CC
V GE
100
= 23Ω
= 150°C
= 480V
= 15V
IC , Collector-to-Emitter Current (A)
4.0
3.0
2.0
1.0
A
0.0
0
10
20
VGE = 20V
TJ = 125°C
SAFE OPERATING AREA
10
A
1
30
1
10
I C , Collector-to-Emitter Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
3.65 (.143)
3.55 (.140)
0.25 (.010) M D B M
15.90 ( .626)
15.30 ( .602)
-B-
-A5.50 (.217)
20.30 (.800)
19.70 (.775)
2X
1
2
-D-
5.30 ( .209)
4.70 ( .185)
2.50 (.089)
1.50 (.059)
4
5.50 (.217)
4.50 (.177)
-C-
*
2.40 (.094)
2.00 (.079)
2X
5.45 (.215)
2X
4.30 (.170)
3.70 (.145)
1.40 (.056)
3X
1.00 (.039)
0.25 ( .010) M
3.40 (.133)
3.00 (.118)
NO TES:
1 DIMENSIO NS & T OLERANCING
PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 DIMENSIO NS ARE SHOW N
MILLIMETE RS (INCHES).
4 CONFO RM S TO JEDEC OUTLINE
T O-247AC.
LEAD ASSIGNMENT S
1 - GAT E
2 - CO LLECTO R
3 - EMIT TER
4 - CO LLECTO R
3
14.80 (.583)
14.20 (.559)
100
NGE R LEADED (20m m)
* LO
VERS ION AVAILAB LE (TO-247AD)
C A
S
0.80 ( .031)
3X 0.40 ( .016)
2.60 (.102)
2.20 (.087)
CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)
Dimensions in Millimeters and (Inches)
TO ORDE R ADD "-E " SUFF IX
TO PART NUMBER
1000
IRGPC30K
L
D.U.T.
VC *
50V
RL =
0 - 480V
1000V
480V
4 X IC@25°C
480µF
960V

‚
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
Driver*
D.U.T.
VC
Fig. 14a - Switching Loss
Test Circuit
50V

1000V
‚
ƒ
* Driver same type
as D.U.T., VC = 480V

‚
90%
ƒ
VC
10%
Fig. 14b - Switching Loss
Waveforms
90%
t d(off)
10%
I C 5%
tf
tr
t d(on)
t=5µs
Eon
Eoff
Ets = (Eon +Eoff )