ETC IRGBC30KD2

PD - 9.1107
IRGBC30KD2
INSULATED GATE BIPOLAR TRANSISTOR
WITH ULTRAFAST SOFT RECOVERY DIODE
Features
Short Circuit Rated
UltraFast CoPack IGBT
C
• Short circuit rated -10µs @125°C, VGE = 15V
• Switching-loss rating includes all "tail" losses
• HEXFREDTM soft ultrafast diodes
• Optimized for high operating frequency (over 5kHz)
See Fig. 1 for Current vs. Frequency curve
VCES = 600V
VCE(sat) ≤ 3.8V
G
@VGE = 15V, IC = 14A
E
n-channel
Description
Co-packaged IGBTs are a natural extension of International Rectifier's well
known IGBT line. They provide the convenience of an IGBT and an ultrafast
recovery diode in one package, resulting in substantial benefits to a host of
high-voltage, high-current, applications.
These new short circuit rated devices are especially suited for motor control
and other applications requiring short circuit withstand capability.
TO-220AB
Absolute Maximum Ratings
Parameter
VCES
I C @ TC = 25°C
I C @ TC = 100°C
I CM
I LM
I F @ TC = 100°C
I FM
t sc
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
23
14
46
46
12
46
10
± 20
100
42
-55 to +150
V
A
µs
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
-------------------------
----------0.50
----2 (0.07)
1.2
2.5
-----80
------
Units
°C/W
g (oz)
IRGBC30KD2
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Collector-to-Emitter Breakdown Voltageƒ 600
∆V(BR)CES /∆T J Temperature Coeff. of Breakdown Voltage---Collector-to-Emitter Saturation Voltage
---VCE(on)
------VGE(th)
Gate Threshold Voltage
3.0
∆V GE(th)/∆TJ Temperature Coeff. of Threshold Voltage ---Forward Transconductance „
3.3
gfe
Zero Gate Voltage Collector Current
---ICES
---V FM
Diode Forward Voltage Drop
------Gate-to-Emitter Leakage Current
---IGES
V(BR)CES
Typ.
---0.30
2.5
3.3
2.5
----13
6.5
------1.4
1.3
----
Max. Units
Conditions
---V
VGE = 0V, IC = 250µA
---- V/°C VGE = 0V, IC = 1.0mA
3.8
IC = 14A
VGE = 15V
See Fig. 2, 5
---V
IC = 23A
---IC = 14A, TJ = 150°C
5.5
VCE = VGE, IC = 250µA
---- mV/°C VCE = VGE, IC = 250µA
---S
VCE = 100V, IC = 14A
250
µA
VGE = 0V, VCE = 600V
2500
VGE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 12A
See Fig. 13
1.6
IC = 12A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Max. Units
Conditions
58
IC = 14A
13
nC
VCC = 400V
23
See Fig. 8
---TJ = 25°C
---ns
IC = 14A, VCC = 480V
170
VGE = 15V, RG = 23Ω
140
Energy losses include "tail" and
---diode reverse recovery.
---mJ See Fig. 9, 10, 11, 18
2.4
---µs
VCC = 360V, TJ = 125°C
VGE = 15V, RG = 23Ω, VCPK < 500V
Turn-On Delay Time
---64
---TJ = 150°C,
See Fig. 9, 10, 11, 18
t d(on)
Rise Time
---- 100 ---ns
IC = 14A, VCC = 480V
tr
t d(off)
Turn-Off Delay Time
---- 190 ---VGE = 15V, RG = 23Ω
Fall Time
---- 180 ---Energy losses include "tail" and
tf
Total Switching Loss
---- 2.2 ---mJ diode reverse recovery.
Ets
Internal Emitter Inductance
---- 7.5 ---nH Measured 5mm from package
LE
Input Capacitance
---- 740 ---VGE = 0V
Cies
Coes
Output Capacitance
---92
---pF
VCC = 30V
See Fig. 7
Reverse Transfer Capacitance
---- 9.4 ---ƒ = 1.0MHz
Cres
Diode Reverse Recovery Time
---42
60
ns
TJ = 25°C See Fig.
t rr
---80 120
TJ = 125°C
14
IF = 12A
Diode Peak Reverse Recovery Current ---- 3.5 6.0
A
TJ = 25°C See Fig.
Irr
---- 5.6
10
TJ = 125°C
15
VR = 200V
Diode Reverse Recovery Charge
---80 180
nC
TJ = 25°C See Fig.
Q rr
---- 220 600
TJ = 125°C
16
di/dt = 200A/
180
µs
di(rec)M/dtDiode Peak Rate of Fall of Recovery ------A/µs
TJ = 25°C See Fig.
During t b ---120
Notes:
---TJ = 125°C
17 CES), VGE=20V, L=10µH,
„ Pulse width 5.0µs,
‚ VCC=80%(V
single shot.
R
=
23Ω,
( See fig. 19 )
 Repetitive rating; VGE=20V, pulse width limited
G
by max. junction temperature. ( See fig. 20 )
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Qg
Qge
Q gc
t d(on)
tr
t d(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
Min.
------------------------------10
Typ.
39
8.7
15
67
120
110
94
1.1
0.5
1.6
----
IRGBC30KD2
15
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate dr ive as specified
Turn-on losses include
effects of reverse recovery
Power Dissipation = 21W
Load Current (A)
12
9
60% of rated
voltage
6
3
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25°C
TJ = 150°C
10
1
VGE = 15V
20µs PULSE WIDTH A
0.1
0.1
1
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
10
IC , Collector-to-Emitter Current (A)
IC , Collector-to-Emitter Current (A)
100
TJ = 150°C
10
TJ = 25°C
VCC = 100V
5µs PULSE WIDTH A
1
5
10
15
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
20
IRGBC30KD2
6.0
VGE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
25
20
15
10
5
A
0
25
50
75
100
125
VGE = 15V
80µs PULSE WIDTH
5.0
I C = 28A
4.0
3.0
I C = 14A
2.0
I C = 7.0A
1.0
0.0
-60
150
TC , Case Temperature (°C)
A
-40
-20
0
20
40
60
80
100 120 140 160
TC, Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs.
Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
PDM
0.10
0.1
0.05
0.02
0.01
0.01
0.00001
t
1
t
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty fact or D = t
1
/t
2
2
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
10
IRGBC30KD2
1400
VGE , Gate-to-Emitter Voltage (V)
1200
C, Capacitance (pF)
20
V GE = 0V,
f = 1MHz
Cies = Cge + C gc , Cce SHORTED
Cres = C gc
Coes = C ce + C gc
1000
Cies
800
C oes
600
400
Cres
200
A
0
1
10
VCE = 400V
I C = 14A
16
12
8
4
A
0
100
0
10
VCE, Collector-to-Emitter Voltage (V)
1.76
40
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
100
= 480V
= 15V
= 25°C
= 14A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC
VGE
TC
IC
30
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
1.80
20
1.72
1.68
1.64
1.60
RG = 23Ω
VG E = 15V
VC C = 480V
10
I C = 24A
I C = 14A
1
I C = 7.0A
A
1.56
0
10
20
30
40
50
60
R G , Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
0.1
-60
A
-40
-20
0
20
40
60
80
100 120 140 160
TC , Case Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Case Temperature
IRGBC30KD2
100
IC , Collector-to-Emitter Current (A)
RG = 23Ω
T C = 150°C
V CC = 480V
V GE = 15V
6.0
4.0
2.0
A
0.0
0
10
20
VGE = 20V
TJ = 125°C
SAFE OPERATING AREA
10
A
1
1
30
10
100
VCE, Collector-to-Emitter Voltage (V)
I C , Collector-to-Emitter Current (A)
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
Instantaneous Forward Current - I F (A)
Total Switching Losses (mJ)
8.0
TJ = 150°C
10
TJ = 125°C
TJ = 25°C
1
0.4
0.8
1.2
1.6
2.0
2.4
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
1000
IRGBC30KD2
100
160
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
120
I F = 12A
80
I F = 6.0A
I IRRM - (A)
t rr - (ns)
I F = 24A
I F = 24A
I F = 12A
10
IF = 6.0A
40
0
100
di f /dt - (A/µs)
1
100
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
1000
Fig. 15 - Typical Recovery Current vs. dif /dt
10000
600
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
VR = 200V
TJ = 125°C
TJ = 25°C
Q RR - (nC)
400
I F = 24A
I F = 12A
200
1000
IF = 6.0A
I F = 12A
100
I F = 24A
IF = 6.0A
0
100
di f /dt - (A/µs)
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
1000
10
100
di f /dt - (A/µs)
Fig. 17 - Typical di(rec)M /dt vs. dif/dt
1000
IRGBC30KD2
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
Ic
90% Ic
10% Vce
Ic
5% Ic
430µF
80%
of Vce
D.U.T.
td(off)
tf
Eoff =
∫
t1+5µS
Vce ic dt
t1
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Qrr =
Ic
∫
trr
id dt
tx
+Vg
tx
10% Vcc
10% Irr
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vcc
Vpk
Irr
10% Ic
90% Ic
td(on)
tr
Ipk
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
∫
t2
Eon = Vce ie dt
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
IRGBC30KD2
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a
D.U.T.
L
1000V
R L=
Vc*
480V
4 X IC @25°C
0 - 480V
50V
6000µF
100V
Fig. 20 - Pulsed Collector Current
Test Circuit
Fig. 19 - Clamped Inductive Load Test
Circuit
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
4
3.78 (.149)
3.54 (.139)
-A-
4.69 (.185)
4.20 (.165)
-B1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
15.24 (.600)
14.84 (.584)
1.15 (.045)
MIN
1
2
LEAD ASSIGNMENTS
1 - GATE
2 - COLLECTOR
3 - EMITTER
4 - COLLECTOR
3
3.96 (.160)
3X
3.55 (.140)
14.09 (.555)
13.47 (.530)
3X
1.40 (.055)
1.15 (.045)
NOTES:
1 DIMENSIONS & TOLERANCING
PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 DIMENSIONS ARE SHOWN
MILLIMETERS (INCHES).
4 CONFORMS TO JEDEC OUTLINE
TO-220AB.
4.06 (.160)
3.55 (.140)
3X
0.93 (.037)
0.69 (.027)
0.36 (.014)
M B A M
2.54 (.100)
3 X 0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2X
CONFORMS TO JEDEC OUTLINE TO-220AB
Dimensions in Millimeters and (Inches)