PD - 9.1107 IRGBC30KD2 INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Short Circuit Rated UltraFast CoPack IGBT C • Short circuit rated -10µs @125°C, VGE = 15V • Switching-loss rating includes all "tail" losses • HEXFREDTM soft ultrafast diodes • Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve VCES = 600V VCE(sat) ≤ 3.8V G @VGE = 15V, IC = 14A E n-channel Description Co-packaged IGBTs are a natural extension of International Rectifier's well known IGBT line. They provide the convenience of an IGBT and an ultrafast recovery diode in one package, resulting in substantial benefits to a host of high-voltage, high-current, applications. These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability. TO-220AB Absolute Maximum Ratings Parameter VCES I C @ TC = 25°C I C @ TC = 100°C I CM I LM I F @ TC = 100°C I FM t sc VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 23 14 46 46 12 46 10 ± 20 100 42 -55 to +150 V A µs V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. ------------------------- ----------0.50 ----2 (0.07) 1.2 2.5 -----80 ------ Units °C/W g (oz) IRGBC30KD2 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES /∆T J Temperature Coeff. of Breakdown Voltage---Collector-to-Emitter Saturation Voltage ---VCE(on) ------VGE(th) Gate Threshold Voltage 3.0 ∆V GE(th)/∆TJ Temperature Coeff. of Threshold Voltage ---Forward Transconductance 3.3 gfe Zero Gate Voltage Collector Current ---ICES ---V FM Diode Forward Voltage Drop ------Gate-to-Emitter Leakage Current ---IGES V(BR)CES Typ. ---0.30 2.5 3.3 2.5 ----13 6.5 ------1.4 1.3 ---- Max. Units Conditions ---V VGE = 0V, IC = 250µA ---- V/°C VGE = 0V, IC = 1.0mA 3.8 IC = 14A VGE = 15V See Fig. 2, 5 ---V IC = 23A ---IC = 14A, TJ = 150°C 5.5 VCE = VGE, IC = 250µA ---- mV/°C VCE = VGE, IC = 250µA ---S VCE = 100V, IC = 14A 250 µA VGE = 0V, VCE = 600V 2500 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 12A See Fig. 13 1.6 IC = 12A, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Max. Units Conditions 58 IC = 14A 13 nC VCC = 400V 23 See Fig. 8 ---TJ = 25°C ---ns IC = 14A, VCC = 480V 170 VGE = 15V, RG = 23Ω 140 Energy losses include "tail" and ---diode reverse recovery. ---mJ See Fig. 9, 10, 11, 18 2.4 ---µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 23Ω, VCPK < 500V Turn-On Delay Time ---64 ---TJ = 150°C, See Fig. 9, 10, 11, 18 t d(on) Rise Time ---- 100 ---ns IC = 14A, VCC = 480V tr t d(off) Turn-Off Delay Time ---- 190 ---VGE = 15V, RG = 23Ω Fall Time ---- 180 ---Energy losses include "tail" and tf Total Switching Loss ---- 2.2 ---mJ diode reverse recovery. Ets Internal Emitter Inductance ---- 7.5 ---nH Measured 5mm from package LE Input Capacitance ---- 740 ---VGE = 0V Cies Coes Output Capacitance ---92 ---pF VCC = 30V See Fig. 7 Reverse Transfer Capacitance ---- 9.4 ---ƒ = 1.0MHz Cres Diode Reverse Recovery Time ---42 60 ns TJ = 25°C See Fig. t rr ---80 120 TJ = 125°C 14 IF = 12A Diode Peak Reverse Recovery Current ---- 3.5 6.0 A TJ = 25°C See Fig. Irr ---- 5.6 10 TJ = 125°C 15 VR = 200V Diode Reverse Recovery Charge ---80 180 nC TJ = 25°C See Fig. Q rr ---- 220 600 TJ = 125°C 16 di/dt = 200A/ 180 µs di(rec)M/dtDiode Peak Rate of Fall of Recovery ------A/µs TJ = 25°C See Fig. During t b ---120 Notes: ---TJ = 125°C 17 CES), VGE=20V, L=10µH, Pulse width 5.0µs, VCC=80%(V single shot. R = 23Ω, ( See fig. 19 ) Repetitive rating; VGE=20V, pulse width limited G by max. junction temperature. ( See fig. 20 ) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Qg Qge Q gc t d(on) tr t d(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Min. ------------------------------10 Typ. 39 8.7 15 67 120 110 94 1.1 0.5 1.6 ---- IRGBC30KD2 15 Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate dr ive as specified Turn-on losses include effects of reverse recovery Power Dissipation = 21W Load Current (A) 12 9 60% of rated voltage 6 3 A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25°C TJ = 150°C 10 1 VGE = 15V 20µs PULSE WIDTH A 0.1 0.1 1 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics 10 IC , Collector-to-Emitter Current (A) IC , Collector-to-Emitter Current (A) 100 TJ = 150°C 10 TJ = 25°C VCC = 100V 5µs PULSE WIDTH A 1 5 10 15 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 20 IRGBC30KD2 6.0 VGE = 15V VCE , Collector-to-Emitter Voltage (V) Maximum DC Collector Current (A) 25 20 15 10 5 A 0 25 50 75 100 125 VGE = 15V 80µs PULSE WIDTH 5.0 I C = 28A 4.0 3.0 I C = 14A 2.0 I C = 7.0A 1.0 0.0 -60 150 TC , Case Temperature (°C) A -40 -20 0 20 40 60 80 100 120 140 160 TC, Case Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 PDM 0.10 0.1 0.05 0.02 0.01 0.01 0.00001 t 1 t SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty fact or D = t 1 /t 2 2 2. Peak TJ = PDM x Z thJC + T C 0.0001 0.001 0.01 0.1 1 t 1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case 10 IRGBC30KD2 1400 VGE , Gate-to-Emitter Voltage (V) 1200 C, Capacitance (pF) 20 V GE = 0V, f = 1MHz Cies = Cge + C gc , Cce SHORTED Cres = C gc Coes = C ce + C gc 1000 Cies 800 C oes 600 400 Cres 200 A 0 1 10 VCE = 400V I C = 14A 16 12 8 4 A 0 100 0 10 VCE, Collector-to-Emitter Voltage (V) 1.76 40 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 100 = 480V = 15V = 25°C = 14A Total Switching Losses (mJ) Total Switching Losses (mJ) VCC VGE TC IC 30 Qg , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 1.80 20 1.72 1.68 1.64 1.60 RG = 23Ω VG E = 15V VC C = 480V 10 I C = 24A I C = 14A 1 I C = 7.0A A 1.56 0 10 20 30 40 50 60 R G , Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance 0.1 -60 A -40 -20 0 20 40 60 80 100 120 140 160 TC , Case Temperature (°C) Fig. 10 - Typical Switching Losses vs. Case Temperature IRGBC30KD2 100 IC , Collector-to-Emitter Current (A) RG = 23Ω T C = 150°C V CC = 480V V GE = 15V 6.0 4.0 2.0 A 0.0 0 10 20 VGE = 20V TJ = 125°C SAFE OPERATING AREA 10 A 1 1 30 10 100 VCE, Collector-to-Emitter Voltage (V) I C , Collector-to-Emitter Current (A) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 100 Instantaneous Forward Current - I F (A) Total Switching Losses (mJ) 8.0 TJ = 150°C 10 TJ = 125°C TJ = 25°C 1 0.4 0.8 1.2 1.6 2.0 2.4 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 1000 IRGBC30KD2 100 160 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 120 I F = 12A 80 I F = 6.0A I IRRM - (A) t rr - (ns) I F = 24A I F = 24A I F = 12A 10 IF = 6.0A 40 0 100 di f /dt - (A/µs) 1 100 1000 Fig. 14 - Typical Reverse Recovery vs. dif/dt 1000 Fig. 15 - Typical Recovery Current vs. dif /dt 10000 600 VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) VR = 200V TJ = 125°C TJ = 25°C Q RR - (nC) 400 I F = 24A I F = 12A 200 1000 IF = 6.0A I F = 12A 100 I F = 24A IF = 6.0A 0 100 di f /dt - (A/µs) di f /dt - (A/µs) Fig. 16 - Typical Stored Charge vs. dif/dt 1000 10 100 di f /dt - (A/µs) Fig. 17 - Typical di(rec)M /dt vs. dif/dt 1000 IRGBC30KD2 90% Vge +Vge Same type device as D.U.T. Vce Ic 90% Ic 10% Vce Ic 5% Ic 430µF 80% of Vce D.U.T. td(off) tf Eoff = ∫ t1+5µS Vce ic dt t1 Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Qrr = Ic ∫ trr id dt tx +Vg tx 10% Vcc 10% Irr Vcc DUT VOLTAGE AND CURRENT Vce Vcc Vpk Irr 10% Ic 90% Ic td(on) tr Ipk Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 ∫ t2 Eon = Vce ie dt t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr ∫ t4 Erec = Vd id dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr IRGBC30KD2 Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a D.U.T. L 1000V R L= Vc* 480V 4 X IC @25°C 0 - 480V 50V 6000µF 100V Fig. 20 - Pulsed Collector Current Test Circuit Fig. 19 - Clamped Inductive Load Test Circuit 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 4 3.78 (.149) 3.54 (.139) -A- 4.69 (.185) 4.20 (.165) -B1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS 1 - GATE 2 - COLLECTOR 3 - EMITTER 4 - COLLECTOR 3 3.96 (.160) 3X 3.55 (.140) 14.09 (.555) 13.47 (.530) 3X 1.40 (.055) 1.15 (.045) NOTES: 1 DIMENSIONS & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 DIMENSIONS ARE SHOWN MILLIMETERS (INCHES). 4 CONFORMS TO JEDEC OUTLINE TO-220AB. 4.06 (.160) 3.55 (.140) 3X 0.93 (.037) 0.69 (.027) 0.36 (.014) M B A M 2.54 (.100) 3 X 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2X CONFORMS TO JEDEC OUTLINE TO-220AB Dimensions in Millimeters and (Inches)