TRIQUINT CGB240B

CGB 240B
Datasheet
2-Stage Bluetooth & WLAN InGaP HBT Power Amplifier
Description:
The CGB240B GaAs power amplifier MMIC has been
especially developed for wireless LAN applications in the
2.4 - 2.5 GHz ISM band, compliant with IEEE 802.11b
standards. The chip is also fully compliant with Bluetooth
class 1 applications and thus can be used in dual-mode
(Bluetooth/WLAN) applications, too.
Applications:
•
WLAN
•
IEEE 802.11a
•
Bluetooth Class 1
While providing an effective channel power of 22dBm, the
ACPR is better than -33dB relative to the sinx/x spectral
peak of an IEEE802.11b–modulated TX signal. Each
CGB240B chip is individually tested for IP3, resulting in
guaranteed ACPR performance.
In a Bluetooth class 1 system, the CGB240B’s high power
added efficiency (up to 50%) and single positive supply
operation makes the device ideally suited for handheld
applications. The CGB240B delivers 23 dBm output power
at a supply voltage of 3.2 V, with an overall PAE of 50% in
saturated mode. The output power can be adjusted using
an analog control voltage (VCTR). Simple external input-,
interstage-, and output matching circuits are used to adapt
to the different requirements of linearity and harmonic
suppression in various applications2-stage InGaP HBT
power amplifier for WLAN and Bluetooth applications.
Package Outline:
1
5
P-TSSOP-10-2
Features:
• Pout = +23dBm at 3.2 V
• ACPR / IP3 tested to be compliant with IEEE802.11b
standard
• Fully compliant with Bluetooth requirements (dual-mode
use)
• Single voltage supply
Pin configuration:
1 & 2:
3:
4, 5, & 10:
6:
7:
8 & 9:
11 (paddle)
Vc1
RFin
NC
Vcntrl1
Vcntro2
Vc2
GND
• Wide operating voltage range 2.0 - 5.5 V
• Analog power control with four power steps
• Easy external matching concept
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 1/20
CGB240B Datasheet
Absolute Maximum Ratings:
Parameter
Symbol
Limit Values
min.
max.
Unit
Max. Supply Voltage CW
VCC, MAX
0
5.5
V
Max. Supply Voltage Pulsed
VCCP, MAX
0
5.0
V
Max. Control Voltage
VCTR, MAX
0
3.5
V
Max. Current Stage 1
IC1, MAX
0
40
mA
IC2, MAX
0
180
mA
Max. Current Stage 2
1
Max. Total Power Dissipation )
PTOT
650
mW
Max. RF Input Power 2)
PIN, MAX
+10
dBm
POUT, MAX
+25
dBm
+85
°C
150
°C
150
°C
Max. RF Output Power
2)
Operating Temperature Range
Max. Junction Temperature
- 40
TA
1)
TCh
Storage Temperature
- 55
TStg
1
) Thermal resistance between junction and pad 11 ( = heatsink ): RTHCH = 100 K/W.
) No RF input signal should be applied at turn on of DC Power. An output VSWR of 1:1 is assumed.
2
Typical Electrical Characteristics of CGB240B for IEEE802.11b Applications
(Typical data for CGB240B reference application board, see application note 1 )
TA = 25 °C; VCC = VCTR= 3.3 V; f = 2.45 GHz; ZIN,Board = ZOUT,Board = 50 Ohms
Parameter
Symbol
Limit Values
min
typ
Unit
Test Conditions
max
Supply Current
Small-Signal Operation
ICC, SS
190
mA
PIN = - 10 dBm
Power Gain
Small-Signal Operation
GSS
28
dB
PIN = - 10 dBm
Adjacent Channel Power
Ratio
ACPR
– 33
dBr
POUT = +22dBm
f = fC ± f MOD
fC = 2.4..2.5 GHz
f MOD= 11..22 MHz.
Output Power
POUT
+22
dBm
ACPR < -33dBr
Power Added Efficiency
PAE
25
%
POUT = +22dBm
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 2/20
CGB240B Datasheet
Electrical Characteristics of CGB240B Device used in Bluetooth PA Reference Design
(See Application Note 2)
TA = 25 °C; VCC = 3.2 V; f = 2.4 ... 2.5 GHz; ZIN,Board = ZOUT, Board = 50 Ohms
Parameter
Symbol
Limit Values
min
typ
Unit
Test Conditions
max
Supply Current
Small-Signal Operation
ICC,SS
100
130
150
mA
PIN = - 10 dBm
VCTR = 2.5 V
Power Gain
Small-Signal Operation
GSS
23
25
27
dB
PIN = - 10 dBm
VCTR = 2.5 V
Output Power
Power Step 1
POUT,1
7
dBm
PIN = + 3 dBm
VCTR = 1.15 V
Supply Current
Power Step 1
ICC,1
15
mA
PIN = + 3 dBm
VCTR = 1.15 V
Power Added Efficiency
Power Step 1
PAE 1
10
%
PIN = + 3 dBm
VCTR = 1.15 V
Output Power
Power Step 2
POUT,2
12
dBm
PIN = + 3 dBm
VCTR = 1.3 V
Supply Current
Power Step 2
ICC,2
25
mA
PIN = + 3 dBm
VCTR = 1.3 V
Power Added Efficiency
Power Step 2
PAE 2
20
%
PIN = + 3 dBm
VCTR = 1.3 V
Output Power
Power Step 3
POUT,3
17
dBm
PIN = + 3 dBm
VCTR = 1.5 V
Supply Current
Power Step 3
ICC,3
52
mA
PIN = + 3 dBm
VCTR = 1.5 V
Power Added Efficiency
Power Step 3
PAE 3
32
%
PIN = + 3 dBm
VCTR = 1.5 V
Output Power
Power Step 4
POUT,4
dBm
PIN = + 3 dBm
VCTR = 2.5 V
Supply Current
Power Step 4
ICC,4
mA
PIN = + 3 dBm
VCTR = 2.5 V
Power Added Efficiency
Power Step 4
PAE 4
%
PIN = + 3 dBm
VCTR = 2.5 V
2nd Harm. Suppression
Power Step 4
h2
- 35
dBc
PIN = + 3 dBm
VCTR = 2.5 V
3rd Harm. Suppression
Power Step 4
h3
- 50
dBc
PIN = + 3 dBm
VCTR = 2.5 V
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
22
23
24
130
40
50
-
pg. 3/20
CGB240B Datasheet
General Electrical Characteristics of CGB240B
Parameter
Symbol
Limit Values
min
typ
Unit
Test Conditions
uA
VCC = 3.2 V
VCTR < 0.4 V
No RF Input
dB
PIN = + 3 dBm
VCTR = 0 V
max
1
Turn-Off Current
ICC, OFF
Off-State Isolation
S21, 0
Rise Time 1 3)
TR1
1
µs
VCC = 5.0 V
VCTR = 0 to 1V Step
Rise Time 2 3)
TR2
1
µs
VCC = 5.0 V
VCTR = 0 to 3V Step
Fall Time 1 3)
TF1
1
µs
VCC = 5.0 V
VCTR = 1 to 0V Step
Fall Time 2 3)
TF2
1
µs
VCC = 5.0 V
VCTR = 3 to 0V Step
Maximum Load VSWR
allowed for 10s
VSWR
6
(no damage to device)
26
PIN = + 5 dBm
VCC = 4.8 V
VCTR = 2.5 V
ZIN = 50 Ohms
3
) Rise time TR defined as time between turn-on of VCTR voltage until reach of 90% of full output
power level.
Fall time TF defined as time between turn-off of VCTR voltage until reach of 10% of full output power
level.
Please note: Reduced Vccp, max for pulsed operation applies (see “absolute maximum ratings”).
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 4/20
CGB240B Datasheet
Typical S–Parameters for IEEE802.11b Operation
TA = 25 °C; VCC = 3.3 V; VCTR = 3,3 V; Port 1: RF In (Pin 3); Port 2: RF Out (Pins 8/9)
PIN < - 10 dBm; Interstage match and DC bias circuit according to application note 1.
Frequency
(GHz)
S11
Real
(x1)
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
2,2
2,3
2,4
2,5
2,6
2,8
3
3,2
3,4
3,6
3,8
4
0,31
0,29
0,17
0,04
-0,06
-0,16
-0,27
-0,37
-0,47
-0,57
-0,67
-0,70
-0,73
-0,74
-0,74
-0,69
-0,63
-0,53
-0,41
-0,30
-0,21
-0,12
S21
Imag
(x1)
-0,10
-0,22
-0,31
-0,34
-0,35
-0,35
-0,34
-0,32
-0,27
-0,22
-0,11
-0,04
0,04
0,12
0,21
0,36
0,51
0,63
0,72
0,77
0,80
0,82
Real
(x1)
S12
Imag
(x1)
10,46
2,51
6,10
8,57
9,25
8,65
7,17
5,11
2,70
-0,36
-3,71
-5,32
-6,88
-8,18
-9,23
-10,40
-10,94
-10,59
-9,16
-7,78
-6,26
-4,62
-2,89
0,20
1,73
-0,46
-3,27
-6,18
-8,66
-10,46
-11,63
-12,67
-12,10
-11,58
-10,53
-9,49
-8,10
-4,99
-2,12
0,72
3,05
4,53
5,45
6,47
Real
(x1)
0,0002
0,0001
-0,0004
-0,0001
0,0003
0,0004
0,0007
0,0008
0,0012
0,0026
0,0025
0,0026
0,0026
0,0034
0,0033
0,0044
0,0053
0,0061
0,0084
0,0088
0,0105
0,0119
S21
Imag
(x1)
0,0001
0,0003
0,0015
0,0017
0,0022
0,0028
0,0030
0,0034
0,0043
0,0046
0,0051
0,0049
0,0048
0,0051
0,0055
0,0059
0,0066
0,0067
0,0070
0,0050
0,0051
0,0033
Real
(x1)
Imag
(x1)
-0,47
-0,60
-0,61
-0,60
-0,59
-0,57
-0,56
-0,55
-0,54
-0,50
-0,47
-0,46
-0,44
-0,43
-0,41
-0,35
-0,30
-0,24
-0,17
-0,12
-0,04
0,06
-0,02
0,05
0,11
0,16
0,20
0,22
0,24
0,26
0,30
0,32
0,34
0,36
0,37
0,39
0,41
0,44
0,48
0,50
0,50
0,51
0,51
0,47
Note: Table available as S2P file.
CGB240B
RF signal layer
200µm FR4
epoxy substrate
RF ground plane
Gnd via
Reference planes for
impedance measurements
Figure 1 Ground plane configuration and impedance reference planes.
The impedance reference plane is located at the center of the device pin, assuming
that a continuous microstrip ground plane exists and that low-inductance (e.g. 6-via)
connections of the device’s center ground pad (11) to the microstrip ground plane are
present.
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 5/20
CGB240B Datasheet
Operational Impedances for Bluetooth Application
TA = 25 °C; VCC = 2.8 to 3.2 V; VCTR = 2.5 to 2.8 V; f = 2.4 ... 2.5 GHz
PIN = + 3 dBm (Large signal operation; PA in compression)
Parameter (Target Data)
Symbol
4
Generator Impedance )
ZGEN
5
Interstage Termination )
ZIS
Load Impedance
ZLOAD
Typ. Value
Unit
9-j1
Ohms
1 + j 12.5
Ohms
15 + j 3
Ohms
4
) Generator impedance equals approximately conjugate complex input impedance: ZIN ≈ ZGEN*
5
) ZIS is the impedance to be presented to the interstage output (pin 1 and pin 2) of the device.
The given load impedance is optimized for output power in saturated mode
(Bluetooth) and does not represent the conjugate complex output impedance of the
device since large signal conditions apply.
CGB240B
RF signal layer
200µm FR4
epoxy substrate
RF ground plane
Gnd via
Reference planes for
impedance measurements
Figure 2 Ground plane configuration and impedance reference planes.
The impedance reference plane is located at the center of the device pin, assuming
that a continuous microstrip ground plane exists and that low-inductance (e.g. 6-via)
connections of the device’s center ground pad (11) to the microstrip ground plane are
present.
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 6/20
CGB240B Datasheet
Typical Device Performance for IEEE802.11b Reference Design
(see Application Note 1)
Valid for all plots: TA = 25 °C; VCC = 3.3 V; VCTR = 3.3 V; f = 2.45 GHz;
Output Power Compression POUT = f ( PIN )
ACPR for IEEE802.11b Modulation
ACPR IEEE802.11b = f ( POUT )
25
-20
dBm
dBr
Typical ACPR of Output Signal
Output Power
24
23
22
21
20
-30
-33 dBr
-35
-40
-10
-8
-6
-4
Input Power
20
-2 dBm 0
Optimum Input Power PIN = f ( T )
ACPR IEEE802.11b< –33dBr, POUT>22dBm
21
22
Output Power
23
dBm 24
Output Power POUT = f ( T )
ACPR IEEE802.11b< –33dBr
-5
22,5
dBm
dBm
-5,5
22
Pout with ACPR <-33dBr
Optimum input power for ACPR <-33dBr
-25
-6
-6,5
-7
21,5
21
20,5
-40
-20
0
20
Temperature
40
60 °C 80
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
-40
-20
0
20
Temperature
40
60 °C 80
pg. 7/20
CGB240B Datasheet
Typical Device Performance for Bluetooth Reference Design
(see Application Note 2)
Valid for all plots: TA = 25 °C; VCC = 3.2 V; VCTR = 2.5 V; f = 2.4 ... 2.5 GHz;
Efficiency PAE = f ( VCC )
PIN = +3dBm
Output Power POUT = f ( VCC )
PIN = +3dBm
60,0
25,0
%
dBm
23,0
50,0
Output Power Pout
Power Added Efficiency PAE
55,0
45,0
40,0
19,0
17,0
35,0
30,0
15,0
2,0
V 5,0
3,0
4,0
Supply Voltage Vcc
2,0
Supply Current ICC = f ( VCTR )
PIN = +3dBm
V 5,0
3,0
4,0
Supply Voltage Vcc
Output Power POUT = f ( VCTR )
PIN = +3dBm
140,0
25,0
mA
dBm
120,0
Vcc=3.2V
20,0
Vcc=3.2V
Vcc=2.8V
15,0
Output Power Pout
100,0
Supply Current Icc
21,0
80,0
Vcc=2.8V
60,0
40,0
20,0
10,0
5,0
0,0
-5,0
0,0
-10,0
1,0
1,5
2,0
Vctr
2,5
V
3,0
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
1,0
1,5
2,0
Vctr
2,5
V
3,0
pg. 8/20
CGB240B Datasheet
Typical Device Performance for Bluetooth Reference Design (cont.)
Output Power Compression POUT = f ( PIN )
150
25,0
dBm
mA
Vcc=3.2V
140
Total Supply Current Icc
Output Power Pout
20,0
15,0
Vcc=2.8V
10,0
5,0
0,0
-20,0
Supply Current ICC = f ( TA )
PIN = +3dBm, Vcc = 3.2V
130
120
110
100
-15,0
-10,0
-5,0
Input Power Pin
0,0 dBm 5,0
-40
Output Power POUT = f ( TA )
PIN = +3dBm
60
80 Deg C
Small-Signal Gain S21 = f ( TA )
PIN = -10 dBm, Vcc = 3.2V
30
dBm
dB
24
28
23
26
SS Gain
25
Output Power Pout
-20
0
20
40
Ambient Temperature Ta
22
21
24
22
20
20
-40
-20
0
20
40
Ambient Temperature Ta
60
80 Deg C
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
-40
-20
0
20
40
Ambient Temperature Ta
60
80 Deg C
pg. 9/20
CGB240B Datasheet
Pinning
1
5
P-TSSOP-10-2
Figure 3
CGB240B Outline
Pad
Symbol
Function
1
VC1
Supply voltage of 1st stage / interstage match
2
VC1
Supply voltage of 1st stage / interstage match
3
RFIN
RF input
4
N.C.
5
N.C.
6
VCTR1
Control voltage 1st stage
7
VCTR2
Control voltage 2nd stage
8
VC2
Supply voltage of 2nd stage / RF output
9
VC2
Supply voltage of 2nd stage / RF output
10
N.C.
11
GND
RF and DC ground (pad located on backside of package)
Heatsink. Thermal resistance between junction – pad 11: RTHCH = 100
K/W.
Functional Diagram
(1,2)
Vc1
(3)
RFin
(8,9) Vc2
(11) Gnd
(6)
Vctr1
Figure 4
(7)
Vctr2
CGB240B Functional Diagram
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 10/20
CGB240B Datasheet
Application Note 1: High Power 22dBm IEEE802.11b Power Amplifier
Vcc
R1
C5
C6
TRL2
L1
CGB240B
TRL1
C1
1
TRL3
10
C2
RF In
RF Out
5 11 6
C4
C3
C7
Vctr
Figure 5
IEEE802.11b WLAN Power Amplifier.
Part
Type
Value
Outline
Source
C1
Cer. Capacitor
22 pF
0402
Murata COG
C2
Cer. Capacitor
22 pF
0402
Murata COG
C3
Cer. Capacitor
1.5 pF
0603
AVX ACCU-P
C4
Cer. Capacitor
2.2 pF
0402
Murata COG
C5
Cer. Capacitor
82 pF
0402
Murata COG
C6
Cer. Capacitor
1 µF
0603
Murata X7R
C7
Cer. Capacitor
1 nF
0402
Murata X7R
L1
Inductor
22 nH
0603
Toko
0402
Mira
Part No.
06035J1R5BBT
LL1608–FS
Resistor
10 Ω
6
TRL1 )
Microstrip Line
l = 2,5 mm; FR4: εr = 4.8; h = 0,2 mm; w = 0,32 mm
8)
Microstrip Line
l = 1,0 mm; FR4: εr = 4.8; h = 0,2 mm; w = 0,32 mm
TRL3 8)
Microstrip Line
l = 2,8 mm; FR4: εr = 4.8; h = 0,2 mm; w = 0,32 mm
R1
TRL2
8
) Line length measured from corner of capacitor to end of MMIC’s lead.
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 11/20
CGB240B Datasheet
R
1
C6
L1
C5
C1
CGB240B
C
4
„White Dots“ =
Ground Vias
C2
C7
RF Out
(SMA)
RF In
(SMA)
Figure 6
C
3
Layout of CGB240B evaluation board tuned for IEEE802.11b WLAN
application (see application note 1).
Vc1 and Vc2 are connected together on the PCB.
Vctr1 and Vctr2 are connected together on the PCB.
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 12/20
CGB240B Datasheet
Application Note 2: Bluetooth PA Reference Design using CGB240B
Vcc
R1
C5
C6
TRL2
L1
CGB240B
TRL1
C1
1
TRL3
10
C2
RF In
RF Out
5 11 6
C4
C3
C7
Vctr
Figure 7
Schematic of Bluetooth PA reference design using CGB240B.
Part
Type
Value
Outline
Source
C1
Cer. Capacitor
22 pF
0402
Murata COG
Cer. Capacitor
22 pF
0402
Murata COG
C3 )
Cer. Capacitor
1.5 pF
0603
AVX ACCU-P
C4
Cer. Capacitor
2.2 pF
0402
Murata COG
C5
Cer. Capacitor
10 pF
0402
Murata COG
C6
Cer. Capacitor
1 µF
0603
Murata X7R
C7
Cer. Capacitor
1 nF
0402
Murata X7R
L1
Inductor
22 nH
0603
Toko
Resistor
10 Ω
0402
Mira
TRL1 )
Microstrip Line
l = 2,5 mm; FR4 - εr = 4.8; h = 0,2 mm; w = 0,32 mm
TRL2 8)
Microstrip Line
l = 1,8 mm; FR4 - εr = 4.8; h = 0,2 mm; w = 0,32 mm
8)
Microstrip Line
l = 4,0 mm; FR4 - εr = 4.8; h = 0,2 mm; w = 0,32 mm
C2
7
R1
8
TRL3
Part No.
06035J1R5BBT
LL1608–FS
7
) Cost optimization might take place by using lower-Q AVX-CU capacitors instead of the AccuP
version. This will lead to better h2 performance, however resulting in a loss of about 2% PAE.
8
) Line length measured from corner of capacitor to end of MMIC’s lead.
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 13/20
CGB240B Datasheet
R
1
C6
L1
C5
C1
CGB240B
C
3
C2
C
4
„White Dots“ =
Ground Vias
C7
RF Out
(SMA)
Figure 8
Layout of CGB240B evaluation board using TRL matching
(see application note 2).
Vc1 and Vc2 are connected together on the PCB.
Vctr1 and Vctr2 are connected together on the PCB.
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 14/20
CGB240B Datasheet
Application Note 3: CGB240B as Bluetooth Power Amplifier using a Lumped
Element Matching Concept
Vcc
C6
C8
L1
L4
C1
L2
CGB240B
1
L3
10
C2
RF In
RF Out
C4
C5
5 11 6
C3
C7
Vctr
Figure 9
CGB240B Bluetooth amplifier using lumped element matching.
Part
Type
Value
Outline
Source
C1
Cer. Capacitor
22 pF
0402
Murata COG
C2
Cer. Capacitor
22 pF
0402
Murata COG
C3
Cer. Capacitor
1.5 pF
0603
AVX ACCU-P
C4
Cer. Capacitor
2.0 pF
0402
Murata COG
C5
Cer. Capacitor
82 pF
0402
Murata COG
C6
Cer. Capacitor
0.1 µF
0603
Murata X7R
C7
Cer. Capacitor
1 nF
0402
Murata X7R
C8
Cer. Capacitor
0.1 µF
0603
Murata X7R
L1
Inductor
22 nH
0603
Toko
LL1005–FH22NJ
L2
Inductor
1.0 nH
0402
Coilcraft
0402CS-1N0X_BG
L3
Inductor
1.0 nH
0402
Coilcraft
0402CS-1N0X_BG
L4
Inductor
22 nH
0603
Toko
LL1005–FH22NJ
R1
Jumper
0Ω
0402
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
Part No.
06035J1R5BBT
pg. 15/20
CGB240B Datasheet
R1
C6
L1
C8
L4
C5
C1
C
4
L2
CGB240B
„White Dots“ =
Ground Vias
L3
C
3
C2
C7
RF In
(SMA)
Figure 10
RF Out
(SMA)
Bluetooth PA with lumped element matching
(see application note 3).
A the discrete matching concept shown in figure 10 uses no transmission lines but
only discrete components to provide device matching.
The use of a discrete matching concept saves PCB space an makes the design more
tolerant towards variations of the PCB’s εr , but will lead to a lower output power (typ.
0.3 dB lower) and higher BOM cost.
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 16/20
CGB240B Datasheet
Description of P-TSSOP-10-2 Package
In order to ensure maximum mounting yield and optimal reliability, special soldering
conditions apply in volume production. Please ask for our information brochure on
details or download the related document (TSSOP10_Soldering_Version01.pdf) from
our website.
The P-TSSOP-10-2 is a level 3 package. International standards for handling this
type of package are described in the JEDEC standard J-STD-033 „STANDARD FOR
HANDLING, PACKING, SHIPPING AND USE OF MOISTURE/REFLOW SENSITIVE
SURFACE-MOUNT DEVICES“, published May-1999. The original document is
available from the JEDEC website www.jedec.org .
MSL Rating: 1/260C
Pb Free
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 17/20
CGB240B Datasheet
Part Marking:
Part Orientation on Reel:
Ordering Information:
Type
Marking
Ordering Code
Package
CGB240B
CGB240B
t.b.d.
P-TSSOP-10-2
ESD: Electrostatic discharge sensitive device
Observe handling precautions!
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 18/20
CGB240B Datasheet
Published by TriQuint Semiconductor GmbH, Marketing, Konrad-Zuse-Platz 1, D-81829
Munich.
copyright TriQuint Semiconductor GmbH 2003. All Rights Reserved.
As far as patents or other rights of third parties are concerned, liability is only assumed for
components per se, not for applications, processes and circuits implemented within
components or assemblies.
The information describes the type of component and shall not be considered as assured
characteristics.
Terms of delivery and rights to change design reserved.
For questions on technology, delivery, and prices please contact the Offices of TriQuint
Semiconductor in Germany or the TriQuint Semiconductor Companies and Representatives
worldwide.
Due to technical requirements components may contain dangerous substances. For information
on the type in question please contact your nearest TriQuint Semiconductors Office.
For More Information, Please Visit www.triquint.com
Rev 1.3, July 14th, 2003
pg. 19/20