CGB 240B Datasheet 2-Stage Bluetooth & WLAN InGaP HBT Power Amplifier Description: The CGB240B GaAs power amplifier MMIC has been especially developed for wireless LAN applications in the 2.4 - 2.5 GHz ISM band, compliant with IEEE 802.11b standards. The chip is also fully compliant with Bluetooth class 1 applications and thus can be used in dual-mode (Bluetooth/WLAN) applications, too. Applications: • WLAN • IEEE 802.11a • Bluetooth Class 1 While providing an effective channel power of 22dBm, the ACPR is better than -33dB relative to the sinx/x spectral peak of an IEEE802.11b–modulated TX signal. Each CGB240B chip is individually tested for IP3, resulting in guaranteed ACPR performance. In a Bluetooth class 1 system, the CGB240B’s high power added efficiency (up to 50%) and single positive supply operation makes the device ideally suited for handheld applications. The CGB240B delivers 23 dBm output power at a supply voltage of 3.2 V, with an overall PAE of 50% in saturated mode. The output power can be adjusted using an analog control voltage (VCTR). Simple external input-, interstage-, and output matching circuits are used to adapt to the different requirements of linearity and harmonic suppression in various applications2-stage InGaP HBT power amplifier for WLAN and Bluetooth applications. Package Outline: 1 5 P-TSSOP-10-2 Features: • Pout = +23dBm at 3.2 V • ACPR / IP3 tested to be compliant with IEEE802.11b standard • Fully compliant with Bluetooth requirements (dual-mode use) • Single voltage supply Pin configuration: 1 & 2: 3: 4, 5, & 10: 6: 7: 8 & 9: 11 (paddle) Vc1 RFin NC Vcntrl1 Vcntro2 Vc2 GND • Wide operating voltage range 2.0 - 5.5 V • Analog power control with four power steps • Easy external matching concept For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 1/20 CGB240B Datasheet Absolute Maximum Ratings: Parameter Symbol Limit Values min. max. Unit Max. Supply Voltage CW VCC, MAX 0 5.5 V Max. Supply Voltage Pulsed VCCP, MAX 0 5.0 V Max. Control Voltage VCTR, MAX 0 3.5 V Max. Current Stage 1 IC1, MAX 0 40 mA IC2, MAX 0 180 mA Max. Current Stage 2 1 Max. Total Power Dissipation ) PTOT 650 mW Max. RF Input Power 2) PIN, MAX +10 dBm POUT, MAX +25 dBm +85 °C 150 °C 150 °C Max. RF Output Power 2) Operating Temperature Range Max. Junction Temperature - 40 TA 1) TCh Storage Temperature - 55 TStg 1 ) Thermal resistance between junction and pad 11 ( = heatsink ): RTHCH = 100 K/W. ) No RF input signal should be applied at turn on of DC Power. An output VSWR of 1:1 is assumed. 2 Typical Electrical Characteristics of CGB240B for IEEE802.11b Applications (Typical data for CGB240B reference application board, see application note 1 ) TA = 25 °C; VCC = VCTR= 3.3 V; f = 2.45 GHz; ZIN,Board = ZOUT,Board = 50 Ohms Parameter Symbol Limit Values min typ Unit Test Conditions max Supply Current Small-Signal Operation ICC, SS 190 mA PIN = - 10 dBm Power Gain Small-Signal Operation GSS 28 dB PIN = - 10 dBm Adjacent Channel Power Ratio ACPR – 33 dBr POUT = +22dBm f = fC ± f MOD fC = 2.4..2.5 GHz f MOD= 11..22 MHz. Output Power POUT +22 dBm ACPR < -33dBr Power Added Efficiency PAE 25 % POUT = +22dBm For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 2/20 CGB240B Datasheet Electrical Characteristics of CGB240B Device used in Bluetooth PA Reference Design (See Application Note 2) TA = 25 °C; VCC = 3.2 V; f = 2.4 ... 2.5 GHz; ZIN,Board = ZOUT, Board = 50 Ohms Parameter Symbol Limit Values min typ Unit Test Conditions max Supply Current Small-Signal Operation ICC,SS 100 130 150 mA PIN = - 10 dBm VCTR = 2.5 V Power Gain Small-Signal Operation GSS 23 25 27 dB PIN = - 10 dBm VCTR = 2.5 V Output Power Power Step 1 POUT,1 7 dBm PIN = + 3 dBm VCTR = 1.15 V Supply Current Power Step 1 ICC,1 15 mA PIN = + 3 dBm VCTR = 1.15 V Power Added Efficiency Power Step 1 PAE 1 10 % PIN = + 3 dBm VCTR = 1.15 V Output Power Power Step 2 POUT,2 12 dBm PIN = + 3 dBm VCTR = 1.3 V Supply Current Power Step 2 ICC,2 25 mA PIN = + 3 dBm VCTR = 1.3 V Power Added Efficiency Power Step 2 PAE 2 20 % PIN = + 3 dBm VCTR = 1.3 V Output Power Power Step 3 POUT,3 17 dBm PIN = + 3 dBm VCTR = 1.5 V Supply Current Power Step 3 ICC,3 52 mA PIN = + 3 dBm VCTR = 1.5 V Power Added Efficiency Power Step 3 PAE 3 32 % PIN = + 3 dBm VCTR = 1.5 V Output Power Power Step 4 POUT,4 dBm PIN = + 3 dBm VCTR = 2.5 V Supply Current Power Step 4 ICC,4 mA PIN = + 3 dBm VCTR = 2.5 V Power Added Efficiency Power Step 4 PAE 4 % PIN = + 3 dBm VCTR = 2.5 V 2nd Harm. Suppression Power Step 4 h2 - 35 dBc PIN = + 3 dBm VCTR = 2.5 V 3rd Harm. Suppression Power Step 4 h3 - 50 dBc PIN = + 3 dBm VCTR = 2.5 V For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 22 23 24 130 40 50 - pg. 3/20 CGB240B Datasheet General Electrical Characteristics of CGB240B Parameter Symbol Limit Values min typ Unit Test Conditions uA VCC = 3.2 V VCTR < 0.4 V No RF Input dB PIN = + 3 dBm VCTR = 0 V max 1 Turn-Off Current ICC, OFF Off-State Isolation S21, 0 Rise Time 1 3) TR1 1 µs VCC = 5.0 V VCTR = 0 to 1V Step Rise Time 2 3) TR2 1 µs VCC = 5.0 V VCTR = 0 to 3V Step Fall Time 1 3) TF1 1 µs VCC = 5.0 V VCTR = 1 to 0V Step Fall Time 2 3) TF2 1 µs VCC = 5.0 V VCTR = 3 to 0V Step Maximum Load VSWR allowed for 10s VSWR 6 (no damage to device) 26 PIN = + 5 dBm VCC = 4.8 V VCTR = 2.5 V ZIN = 50 Ohms 3 ) Rise time TR defined as time between turn-on of VCTR voltage until reach of 90% of full output power level. Fall time TF defined as time between turn-off of VCTR voltage until reach of 10% of full output power level. Please note: Reduced Vccp, max for pulsed operation applies (see “absolute maximum ratings”). For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 4/20 CGB240B Datasheet Typical S–Parameters for IEEE802.11b Operation TA = 25 °C; VCC = 3.3 V; VCTR = 3,3 V; Port 1: RF In (Pin 3); Port 2: RF Out (Pins 8/9) PIN < - 10 dBm; Interstage match and DC bias circuit according to application note 1. Frequency (GHz) S11 Real (x1) 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,3 2,4 2,5 2,6 2,8 3 3,2 3,4 3,6 3,8 4 0,31 0,29 0,17 0,04 -0,06 -0,16 -0,27 -0,37 -0,47 -0,57 -0,67 -0,70 -0,73 -0,74 -0,74 -0,69 -0,63 -0,53 -0,41 -0,30 -0,21 -0,12 S21 Imag (x1) -0,10 -0,22 -0,31 -0,34 -0,35 -0,35 -0,34 -0,32 -0,27 -0,22 -0,11 -0,04 0,04 0,12 0,21 0,36 0,51 0,63 0,72 0,77 0,80 0,82 Real (x1) S12 Imag (x1) 10,46 2,51 6,10 8,57 9,25 8,65 7,17 5,11 2,70 -0,36 -3,71 -5,32 -6,88 -8,18 -9,23 -10,40 -10,94 -10,59 -9,16 -7,78 -6,26 -4,62 -2,89 0,20 1,73 -0,46 -3,27 -6,18 -8,66 -10,46 -11,63 -12,67 -12,10 -11,58 -10,53 -9,49 -8,10 -4,99 -2,12 0,72 3,05 4,53 5,45 6,47 Real (x1) 0,0002 0,0001 -0,0004 -0,0001 0,0003 0,0004 0,0007 0,0008 0,0012 0,0026 0,0025 0,0026 0,0026 0,0034 0,0033 0,0044 0,0053 0,0061 0,0084 0,0088 0,0105 0,0119 S21 Imag (x1) 0,0001 0,0003 0,0015 0,0017 0,0022 0,0028 0,0030 0,0034 0,0043 0,0046 0,0051 0,0049 0,0048 0,0051 0,0055 0,0059 0,0066 0,0067 0,0070 0,0050 0,0051 0,0033 Real (x1) Imag (x1) -0,47 -0,60 -0,61 -0,60 -0,59 -0,57 -0,56 -0,55 -0,54 -0,50 -0,47 -0,46 -0,44 -0,43 -0,41 -0,35 -0,30 -0,24 -0,17 -0,12 -0,04 0,06 -0,02 0,05 0,11 0,16 0,20 0,22 0,24 0,26 0,30 0,32 0,34 0,36 0,37 0,39 0,41 0,44 0,48 0,50 0,50 0,51 0,51 0,47 Note: Table available as S2P file. CGB240B RF signal layer 200µm FR4 epoxy substrate RF ground plane Gnd via Reference planes for impedance measurements Figure 1 Ground plane configuration and impedance reference planes. The impedance reference plane is located at the center of the device pin, assuming that a continuous microstrip ground plane exists and that low-inductance (e.g. 6-via) connections of the device’s center ground pad (11) to the microstrip ground plane are present. For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 5/20 CGB240B Datasheet Operational Impedances for Bluetooth Application TA = 25 °C; VCC = 2.8 to 3.2 V; VCTR = 2.5 to 2.8 V; f = 2.4 ... 2.5 GHz PIN = + 3 dBm (Large signal operation; PA in compression) Parameter (Target Data) Symbol 4 Generator Impedance ) ZGEN 5 Interstage Termination ) ZIS Load Impedance ZLOAD Typ. Value Unit 9-j1 Ohms 1 + j 12.5 Ohms 15 + j 3 Ohms 4 ) Generator impedance equals approximately conjugate complex input impedance: ZIN ≈ ZGEN* 5 ) ZIS is the impedance to be presented to the interstage output (pin 1 and pin 2) of the device. The given load impedance is optimized for output power in saturated mode (Bluetooth) and does not represent the conjugate complex output impedance of the device since large signal conditions apply. CGB240B RF signal layer 200µm FR4 epoxy substrate RF ground plane Gnd via Reference planes for impedance measurements Figure 2 Ground plane configuration and impedance reference planes. The impedance reference plane is located at the center of the device pin, assuming that a continuous microstrip ground plane exists and that low-inductance (e.g. 6-via) connections of the device’s center ground pad (11) to the microstrip ground plane are present. For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 6/20 CGB240B Datasheet Typical Device Performance for IEEE802.11b Reference Design (see Application Note 1) Valid for all plots: TA = 25 °C; VCC = 3.3 V; VCTR = 3.3 V; f = 2.45 GHz; Output Power Compression POUT = f ( PIN ) ACPR for IEEE802.11b Modulation ACPR IEEE802.11b = f ( POUT ) 25 -20 dBm dBr Typical ACPR of Output Signal Output Power 24 23 22 21 20 -30 -33 dBr -35 -40 -10 -8 -6 -4 Input Power 20 -2 dBm 0 Optimum Input Power PIN = f ( T ) ACPR IEEE802.11b< –33dBr, POUT>22dBm 21 22 Output Power 23 dBm 24 Output Power POUT = f ( T ) ACPR IEEE802.11b< –33dBr -5 22,5 dBm dBm -5,5 22 Pout with ACPR <-33dBr Optimum input power for ACPR <-33dBr -25 -6 -6,5 -7 21,5 21 20,5 -40 -20 0 20 Temperature 40 60 °C 80 For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 -40 -20 0 20 Temperature 40 60 °C 80 pg. 7/20 CGB240B Datasheet Typical Device Performance for Bluetooth Reference Design (see Application Note 2) Valid for all plots: TA = 25 °C; VCC = 3.2 V; VCTR = 2.5 V; f = 2.4 ... 2.5 GHz; Efficiency PAE = f ( VCC ) PIN = +3dBm Output Power POUT = f ( VCC ) PIN = +3dBm 60,0 25,0 % dBm 23,0 50,0 Output Power Pout Power Added Efficiency PAE 55,0 45,0 40,0 19,0 17,0 35,0 30,0 15,0 2,0 V 5,0 3,0 4,0 Supply Voltage Vcc 2,0 Supply Current ICC = f ( VCTR ) PIN = +3dBm V 5,0 3,0 4,0 Supply Voltage Vcc Output Power POUT = f ( VCTR ) PIN = +3dBm 140,0 25,0 mA dBm 120,0 Vcc=3.2V 20,0 Vcc=3.2V Vcc=2.8V 15,0 Output Power Pout 100,0 Supply Current Icc 21,0 80,0 Vcc=2.8V 60,0 40,0 20,0 10,0 5,0 0,0 -5,0 0,0 -10,0 1,0 1,5 2,0 Vctr 2,5 V 3,0 For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 1,0 1,5 2,0 Vctr 2,5 V 3,0 pg. 8/20 CGB240B Datasheet Typical Device Performance for Bluetooth Reference Design (cont.) Output Power Compression POUT = f ( PIN ) 150 25,0 dBm mA Vcc=3.2V 140 Total Supply Current Icc Output Power Pout 20,0 15,0 Vcc=2.8V 10,0 5,0 0,0 -20,0 Supply Current ICC = f ( TA ) PIN = +3dBm, Vcc = 3.2V 130 120 110 100 -15,0 -10,0 -5,0 Input Power Pin 0,0 dBm 5,0 -40 Output Power POUT = f ( TA ) PIN = +3dBm 60 80 Deg C Small-Signal Gain S21 = f ( TA ) PIN = -10 dBm, Vcc = 3.2V 30 dBm dB 24 28 23 26 SS Gain 25 Output Power Pout -20 0 20 40 Ambient Temperature Ta 22 21 24 22 20 20 -40 -20 0 20 40 Ambient Temperature Ta 60 80 Deg C For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 -40 -20 0 20 40 Ambient Temperature Ta 60 80 Deg C pg. 9/20 CGB240B Datasheet Pinning 1 5 P-TSSOP-10-2 Figure 3 CGB240B Outline Pad Symbol Function 1 VC1 Supply voltage of 1st stage / interstage match 2 VC1 Supply voltage of 1st stage / interstage match 3 RFIN RF input 4 N.C. 5 N.C. 6 VCTR1 Control voltage 1st stage 7 VCTR2 Control voltage 2nd stage 8 VC2 Supply voltage of 2nd stage / RF output 9 VC2 Supply voltage of 2nd stage / RF output 10 N.C. 11 GND RF and DC ground (pad located on backside of package) Heatsink. Thermal resistance between junction – pad 11: RTHCH = 100 K/W. Functional Diagram (1,2) Vc1 (3) RFin (8,9) Vc2 (11) Gnd (6) Vctr1 Figure 4 (7) Vctr2 CGB240B Functional Diagram For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 10/20 CGB240B Datasheet Application Note 1: High Power 22dBm IEEE802.11b Power Amplifier Vcc R1 C5 C6 TRL2 L1 CGB240B TRL1 C1 1 TRL3 10 C2 RF In RF Out 5 11 6 C4 C3 C7 Vctr Figure 5 IEEE802.11b WLAN Power Amplifier. Part Type Value Outline Source C1 Cer. Capacitor 22 pF 0402 Murata COG C2 Cer. Capacitor 22 pF 0402 Murata COG C3 Cer. Capacitor 1.5 pF 0603 AVX ACCU-P C4 Cer. Capacitor 2.2 pF 0402 Murata COG C5 Cer. Capacitor 82 pF 0402 Murata COG C6 Cer. Capacitor 1 µF 0603 Murata X7R C7 Cer. Capacitor 1 nF 0402 Murata X7R L1 Inductor 22 nH 0603 Toko 0402 Mira Part No. 06035J1R5BBT LL1608–FS Resistor 10 Ω 6 TRL1 ) Microstrip Line l = 2,5 mm; FR4: εr = 4.8; h = 0,2 mm; w = 0,32 mm 8) Microstrip Line l = 1,0 mm; FR4: εr = 4.8; h = 0,2 mm; w = 0,32 mm TRL3 8) Microstrip Line l = 2,8 mm; FR4: εr = 4.8; h = 0,2 mm; w = 0,32 mm R1 TRL2 8 ) Line length measured from corner of capacitor to end of MMIC’s lead. For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 11/20 CGB240B Datasheet R 1 C6 L1 C5 C1 CGB240B C 4 „White Dots“ = Ground Vias C2 C7 RF Out (SMA) RF In (SMA) Figure 6 C 3 Layout of CGB240B evaluation board tuned for IEEE802.11b WLAN application (see application note 1). Vc1 and Vc2 are connected together on the PCB. Vctr1 and Vctr2 are connected together on the PCB. For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 12/20 CGB240B Datasheet Application Note 2: Bluetooth PA Reference Design using CGB240B Vcc R1 C5 C6 TRL2 L1 CGB240B TRL1 C1 1 TRL3 10 C2 RF In RF Out 5 11 6 C4 C3 C7 Vctr Figure 7 Schematic of Bluetooth PA reference design using CGB240B. Part Type Value Outline Source C1 Cer. Capacitor 22 pF 0402 Murata COG Cer. Capacitor 22 pF 0402 Murata COG C3 ) Cer. Capacitor 1.5 pF 0603 AVX ACCU-P C4 Cer. Capacitor 2.2 pF 0402 Murata COG C5 Cer. Capacitor 10 pF 0402 Murata COG C6 Cer. Capacitor 1 µF 0603 Murata X7R C7 Cer. Capacitor 1 nF 0402 Murata X7R L1 Inductor 22 nH 0603 Toko Resistor 10 Ω 0402 Mira TRL1 ) Microstrip Line l = 2,5 mm; FR4 - εr = 4.8; h = 0,2 mm; w = 0,32 mm TRL2 8) Microstrip Line l = 1,8 mm; FR4 - εr = 4.8; h = 0,2 mm; w = 0,32 mm 8) Microstrip Line l = 4,0 mm; FR4 - εr = 4.8; h = 0,2 mm; w = 0,32 mm C2 7 R1 8 TRL3 Part No. 06035J1R5BBT LL1608–FS 7 ) Cost optimization might take place by using lower-Q AVX-CU capacitors instead of the AccuP version. This will lead to better h2 performance, however resulting in a loss of about 2% PAE. 8 ) Line length measured from corner of capacitor to end of MMIC’s lead. For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 13/20 CGB240B Datasheet R 1 C6 L1 C5 C1 CGB240B C 3 C2 C 4 „White Dots“ = Ground Vias C7 RF Out (SMA) Figure 8 Layout of CGB240B evaluation board using TRL matching (see application note 2). Vc1 and Vc2 are connected together on the PCB. Vctr1 and Vctr2 are connected together on the PCB. For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 14/20 CGB240B Datasheet Application Note 3: CGB240B as Bluetooth Power Amplifier using a Lumped Element Matching Concept Vcc C6 C8 L1 L4 C1 L2 CGB240B 1 L3 10 C2 RF In RF Out C4 C5 5 11 6 C3 C7 Vctr Figure 9 CGB240B Bluetooth amplifier using lumped element matching. Part Type Value Outline Source C1 Cer. Capacitor 22 pF 0402 Murata COG C2 Cer. Capacitor 22 pF 0402 Murata COG C3 Cer. Capacitor 1.5 pF 0603 AVX ACCU-P C4 Cer. Capacitor 2.0 pF 0402 Murata COG C5 Cer. Capacitor 82 pF 0402 Murata COG C6 Cer. Capacitor 0.1 µF 0603 Murata X7R C7 Cer. Capacitor 1 nF 0402 Murata X7R C8 Cer. Capacitor 0.1 µF 0603 Murata X7R L1 Inductor 22 nH 0603 Toko LL1005–FH22NJ L2 Inductor 1.0 nH 0402 Coilcraft 0402CS-1N0X_BG L3 Inductor 1.0 nH 0402 Coilcraft 0402CS-1N0X_BG L4 Inductor 22 nH 0603 Toko LL1005–FH22NJ R1 Jumper 0Ω 0402 For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 Part No. 06035J1R5BBT pg. 15/20 CGB240B Datasheet R1 C6 L1 C8 L4 C5 C1 C 4 L2 CGB240B „White Dots“ = Ground Vias L3 C 3 C2 C7 RF In (SMA) Figure 10 RF Out (SMA) Bluetooth PA with lumped element matching (see application note 3). A the discrete matching concept shown in figure 10 uses no transmission lines but only discrete components to provide device matching. The use of a discrete matching concept saves PCB space an makes the design more tolerant towards variations of the PCB’s εr , but will lead to a lower output power (typ. 0.3 dB lower) and higher BOM cost. For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 16/20 CGB240B Datasheet Description of P-TSSOP-10-2 Package In order to ensure maximum mounting yield and optimal reliability, special soldering conditions apply in volume production. Please ask for our information brochure on details or download the related document (TSSOP10_Soldering_Version01.pdf) from our website. The P-TSSOP-10-2 is a level 3 package. International standards for handling this type of package are described in the JEDEC standard J-STD-033 „STANDARD FOR HANDLING, PACKING, SHIPPING AND USE OF MOISTURE/REFLOW SENSITIVE SURFACE-MOUNT DEVICES“, published May-1999. The original document is available from the JEDEC website www.jedec.org . MSL Rating: 1/260C Pb Free For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 17/20 CGB240B Datasheet Part Marking: Part Orientation on Reel: Ordering Information: Type Marking Ordering Code Package CGB240B CGB240B t.b.d. P-TSSOP-10-2 ESD: Electrostatic discharge sensitive device Observe handling precautions! For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 18/20 CGB240B Datasheet Published by TriQuint Semiconductor GmbH, Marketing, Konrad-Zuse-Platz 1, D-81829 Munich. copyright TriQuint Semiconductor GmbH 2003. All Rights Reserved. As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery, and prices please contact the Offices of TriQuint Semiconductor in Germany or the TriQuint Semiconductor Companies and Representatives worldwide. Due to technical requirements components may contain dangerous substances. For information on the type in question please contact your nearest TriQuint Semiconductors Office. For More Information, Please Visit www.triquint.com Rev 1.3, July 14th, 2003 pg. 19/20