INTERSIL FP50N06L

RFG50N06LE, RFP50N06LE, RF1S50N06LESM
Data Sheet
October 1999
50A, 60V, 0.022 Ohm, Logic Level
N-Channel Power MOSFETs
File Number
4072.3
Features
• 50A, 60V
These N-Channel enhancement mode power MOSFETs are
manufactured using the latest manufacturing process
technology. This process, which uses feature sizes
approaching those of LSI circuits, gives optimum utilization
of silicon, resulting in outstanding performance. They were
designed for use in applications such as switching
regulators, switching converters, motor drivers, and relay
drivers. These transistors can be operated directly from
integrated circuits.
• rDS(ON) = 0.022Ω
• Temperature Compensating PSPICE® Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• 175oC Operating Temperature
Formerly developmental type TA49164.
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Ordering Information
Symbol
PART NUMBER
PACKAGE
D
BRAND
RFG50N06LE
TO-247
FG50N06L
RFP50N06LE
TO-220AB
FP50N06L
RF1S50N06LESM
TO-263AB
F50N06LE
G
NOTE: When ordering, use the entire part number. Add the suffix 9A
to obtain the TO-263AB variant in tape and reel, i.e.
RF1S50N06LESM9A.
S
Packaging
JEDEC STYLE TO-247
JEDEC TO-220AB
SOURCE
DRAIN
GATE
SOURCE
DRAIN
GATE
DRAIN
(BOTTOM
SIDE METAL)
DRAIN (FLANGE)
JEDEC TO-263AB
DRAIN
(FLANGE)
GATE
SOURCE
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg
RFG50N06LE, RFP50N06LE,
RF1S50N06LESM
60
60
±10
50
Refer to Peak Current Curve
Refer to UIS Curve
142
0.95
-55 to 175
UNITS
V
V
V
A
W
W/oC
oC
oC
oC
300
260
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V, Figure 13
60
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA, Figure 12
1
-
3
V
VDS = 55V, VGS = 0V
-
-
1
µA
VDS = 50V, VGS = 0V, TC = 150oC
-
-
250
µA
Zero Gate Voltage Drain Current
IDSS
Gate to Source Leakage Current
IGSS
Drain to Source On Resistance (Note 2)
rDS(ON)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
-
-
10
µA
ID = 50A, VGS = 5V, Figure 11
-
-
0.022
Ω
VDD = 30V, ID = 50A,
RL = 0.6Ω, VGS = 5V,
RGS = 2.5Ω
Figures 10, 18, 19
-
-
230
ns
-
20
-
ns
-
170
-
ns
td(OFF)
-
48
-
ns
tf
-
90
-
ns
tOFF
-
-
165
ns
Fall Time
Turn-Off Time
VGS = ±10V
Total Gate Charge
Qg(TOT)
VGS = 0V to 10V
Gate Charge at 5V
Qg(5)
VGS = 0V to 5V
Qg(TH)
VGS = 0V to 1V
Threshold Gate Charge
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
Thermal Resistance Junction to Case
Thermal Resistance Junction to Ambient
RθJA
VDD = 48V,
ID = 50A,
RL = 0.96Ω
Figures 21, 21
VDS = 25V, VGS = 0V,
f = 1MHz
Figure 14
-
96
120
nC
-
57
70
nC
-
2.2
2.7
nC
-
2100
-
pF
-
600
-
pF
CRSS
-
230
-
pF
RθJC
-
-
1.05
oC/W
TO-247
-
-
30
oC/W
TO-220AB and TO-263AB
-
-
80
oC/W
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
Diode Reverse Recovery Time
trr
MIN
TYP
MAX
UNITS
ISD = 45A
TEST CONDITIONS
-
-
1.5
V
ISD = 45A, dISD/dt = 100A/µs
-
-
125
ns
NOTES:
2. Pulse test: pulse width ≤ 80µs, duty cycle ≤ 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
2
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
Unless Otherwise Specified
1.2
60
1.0
50
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
Typical Performance Curves
0.8
0.6
0.4
0.2
40
30
20
10
0
0
0
25
50
75
100
150
125
175
25
50
TC , CASE TEMPERATURE (oC)
75
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
0.5
PDM
0.2
0.1
0.1
t1
t2
0.05
0.02
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
0.01
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
TC = 25oC
TJ = MAX RATED
100
100µs
1ms
10
10ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
1
10
100
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
3
200
1000
IDM, PEAK CURRENT CAPABILITY (A)
ID, DRAIN CURRENT (A)
500
TC = 25oC
VGS = 10V
VGS = 5V
100
THERMAL IMPEDANCE
MAY LIMIT CURRENT
IN THIS REGION
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - TC
I=I
25
10
10-5
10-4
10-3
10-2
150
10-1
100
t, PULSE WIDTH (s)
FIGURE 5. PEAK CURRENT CAPABILITY
101
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
IAS, AVALANCHE CURRENT (A)
300
Unless Otherwise Specified
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
If R ≠ 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
100
STARTING TJ = 25oC
10
STARTING TJ = 150oC
(Continued)
100
TC = 25oC
VGS = 4V
75
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
50
VGS = 3V
25
VGS = 2.5V
1
0.01
NOTE:
0.1
1
10
tAV, TIME IN AVALANCHE (ms)
0
100
0
1.5
3.0
4.5
VDS, DRAIN TO SOURCE VOLTAGE (V)
VDD = 15V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
80
-55oC
25oC
ID = 12.5A
175oC
75
50
25
ON RESISTANCE (mΩ)
100
FIGURE 7. SATURATION CHARACTERISTICS
rDS(ON), DRAIN TO SOURCE
IDS(ON), DRAIN TO SOURCE CURRENT (A)
6.0
Refer to Intersil Application Notes AN9321 and AN9322
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
1.5
3.0
4.5
VGS, GATE TO SOURCE VOLTAGE (V)
ID = 100A
60
40
ID = 25A
20
0
2.0
6.0
2.5
3.5
3.0
4.0
4.5
5.0
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 8. TRANSFER CHARACTERISTICS
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
2.5
VDD = 30V, ID = 50A, RL= 0.6Ω
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
600
tr
500
400
td(OFF)
300
tf
200
td(ON)
100
0
ID = 50A
VDD = 15V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
0
0
SWITCHING TIME (ns)
VGS = 10V
VGS = 5V
ID, DRAIN CURRENT (A)
Typical Performance Curves
VGS = 5V, ID = 50A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
2.0
1.5
1.0
0.5
0
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE
4
50
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
200
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
Typical Performance Curves
Unless Otherwise Specified
(Continued)
2.0
1.2
1.0
0.5
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
0.9
0.8
-80
CISS
2000
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
1000
COSS
500
CRSS
160
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
200
5.0
60
VDD = BVDSS
VDD = BVDSS
45
3.75
RL =1.2Ω
IG(REF) = 1.2mA
VGS = 5V
2.5
30
15
PLATEAU VOLTAGES IN
DESCENDING ORDER:
VDD = BVDSS
VDD = 0.75 BVDSS
VDD = 0.50 BVDSS
VDD = 0.25 BVDSS
0
20 ---------------------I G ( ACT )
25
1.25
0
I G ( REF )
0
5
10
15
20
VDS, DRAIN TO SOURCE VOLTAGE (V)
-40
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
VDS , DRAIN TO SOURCE VOLTAGE (V)
2500
0
1.0
200
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
1500
1.1
t, TIME (µs)
I G ( REF )
80 ---------------------I G ( ACT )
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT
5
FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
VGS , GATE TO SOURCE VOLTAGE (V)
1.5
0
-80
C, CAPACITANCE (pF)
ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
NORMALIZED GATE
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
Test Circuits and Waveforms
(Continued)
tON
tOFF
td(ON)
VDS
td(OFF)
tf
tr
VDS
90%
90%
RL
VGS
+
-
DUT
10%
10%
0
VDD
90%
RGS
VGS
VGS
0
10%
FIGURE 18. SWITCHING TIME TEST CIRCUIT
50%
50%
PULSE WIDTH
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
VDS
VDD
RL
Qg(TOT)
VDS
Qg(10) OR Qg(5)
VGS
+
VDD
VGS
DUT
Ig(REF)
VGS = 2V
0
VGS = 1V FOR
L2 DEVICES
Qg(TH)
VGS = 20V
VGS = 10V FOR
L2 DEVICES
VGS = 10V
VGS = 5V FOR
L2 DEVICES
Ig(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT
6
FIGURE 21. GATE CHARGE WAVEFORMS
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
PSPICE Electrical Model
SUBCKT 50N06LE 2 1 3 ;
rev 8/11/95
CA 12 8 3.73e-9
CB 15 14 3.73e-9
CIN 6 8 2.08e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
LDRAIN
DPLCAP
DRAIN
2
5
10
5
51
ESLC
11
-
RDRAIN
6
8
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
+
17
EBREAK 18
50
-
IT 8 17 1
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 3.75e-3
RGATE 9 20 1.0
RLDRAIN 2 5 40
RLGATE 1 9 60
RLSOURCE 3 7 30
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 6.15e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
DBREAK
+
RSLC2
ESG
LDRAIN 2 5 4.0e-9
LGATE 1 9 6.0e-9
LSOURCE 3 7 3.0e-9
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 66.5
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RLSOURCE
S2A
S1A
12
S1B
CA
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
VBAT
5
8
EDS
-
-
IT
14
+
+
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
RBREAK
15
14
13
13
8
-
+
8
22
RVTHRES
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),4))}
.MODEL DBODYMOD D (IS = 1.70e-12 RS = 3.20e-3 TRS1 = 1.75e-3 TRS2 = 1.75e-6 CJO = 2.55e-9 IKF = 13 XTI = 5.2 TT = 7.00e-8 M = 0.47)
.MODEL DBREAKMOD D (RS = 1.70e-1 IKF = 0.1 TRS1 = 2.00e-3 TRS2 = 8.00e-7)
.MODEL DPLCAPMOD D (CJO = 2.00e-9 IS = 1e-30 VJ = 1.1 M = 0.83 N = 10)
.MODEL MMEDMOD NMOS (VTO = 2.00 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.0)
.MODEL MSTROMOD NMOS (VTO = 2.42 KP = 128 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.60 KP = 0.01 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10.0 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 1.13e-3 TC2 = 0)
.MODEL RDRAINMOD RES (TC1 = 1.20e-2 TC2 = 6.00e-5)
.MODEL RSLCMOD RES (TC1 = 2.00e-3 TC2 = 1.00e-6)
.MODEL RSOURCEMOD RES (TC1 = 2.00e-3 TC2 =-1.00e-5)
.MODEL RVTHRESMOD RES (TC1 = -2.50e-3 TC2 = -8.50e-6)
.MODEL RVTEMPMOD RES (TC1 = -2.00e-3 TC2 = 5.00e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -5.3 VOFF= -2.5)
VON = -2.5 VOFF= -5.3)
VON = -1.4 VOFF= 0.5)
VON = 0.5 VOFF= -1.4)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
8
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029