HAT2052T Silicon N Channel Power MOS FET High Speed Power Switching ADE-208-724C (Z) 4th. Edition February 1999 Features • • • • Low on-resistance Capable of 2.5 V gate drive Low drive current High density mounting Outline TSSOP–8 87 8 D 1 D 4 G 65 12 34 5 G S S 2 3 MOS1 S S 6 7 MOS2 1, 8 Drain 2, 3, 6, 7 Source 4, 5 Gate HAT2052T Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit Drain to source voltage VDSS 28 V Gate to source voltage VGSS ± 12 V Drain current ID 5.0 A 40 A Drain peak current I D(pulse) Body-drain diode reverse drain current I DR Note1 5.0 A Pch Note2 1.0 W Channel dissipation Pch Note3 1.5 W Channel temperature Tch 150 °C Storage temperature Tstg – 55 to + 150 °C Channel dissipation Note: 1. PW ≤ 10µs, duty cycle ≤ 1 % 2. 1 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW≤ 10s 3. 2 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW≤ 10s Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test Conditions Drain to source breakdown voltage V(BR)DSS 28 — — V I D = 10 mA, VGS = 0 Gate to source leak current I GSS — — ± 0.1 µA VGS = ± 12 V, VDS = 0 Zero gate voltege drain current I DSS — — 1 µA VDS = 28 V, VGS = 0 Gate to source cutoff voltage VGS(off) 0.4 — 1.4 V VDS = 10 V, I D = 1 mA Static drain to source on state RDS(on) — 0.027 0.034 Ω I D = 3 A, VGS = 4 V Note4 resistance RDS(on) — 0.037 0.044 Ω I D = 3 A, VGS = 2.5 V Note4 Forward transfer admittance |yfs| 7 11 — S I D = 3 A, VDS = 10 V Note4 Input capacitance Ciss — 510 — pF VDS = 10 V Output capacitance Coss — 190 — pF VGS = 0 Reverse transfer capacitance Crss — 140 — pF f = 1MHz Total gate charge Qg — 8.5 — nc VDD = 10 V Gate to source charge Qgs — 4.5 — nc VGS = 4 V Gate to drain charge Qgd — 4 — nc ID = 5 A Turn-on delay time t d(on) — 14 — ns VGS = 4 V, ID = 3 A Rise time tr — 120 — ns VDD ≅ 10 V Turn-off delay time t d(off) — 85 — ns Fall time tf — 120 — ns Body–drain diode forward voltage VDF — 0.85 1.1 V IF = 5.0 A, VGS = 0 Note4 Body–drain diode reverse recovery time t rr — 40 — ns IF = 5.0 A, VGS = 0 diF/ dt = 20 A/µs Note: 2 4. Pulse test HAT2052T Main Characteristics Power vs. Temperature Derating 100 Test Condition : When using the glass epoxy board (FR4 40x40x1.6 mm), PW < 10 s 1.5 Maximum Safe Operation Area 10 µs 30 I D (A) Pch (W) 2.0 100 µs 10 DC Drain Current 2 1.0 ive Dr 1 er 50 0.3 at 0.1 ion 100 Ambient Temperature 0.03 150 200 Ta (°C) PW Op er 1 n Op tio ive ra Dr 0.5 0 e Op Channel Dissipation 3 1 at ion m s = 10 m s (P W N Operation in < ote 10 5 this area is s) limited by R DS(on) Ta = 25 °C 1 shot Pulse 0.01 0.1 0.3 1 3 10 30 100 Drain to Source Voltage V DS (V) Note 5 : When using the glass epoxy board (FR4 40x40x1.6 mm) Typical Output Characteristics 10 4V 1.5 V 6 Drain Current I D (A) 8 I D (A) Pulse Test 10V Drain Current Typical Transfer Characteristics 10 4 2 8 6 –25°C 4 25°C 2 Tc = 75°C V DS = 10 V Pulse Test VGS = 1.0 V 0 1 2 3 Drain to Source Voltage 4 5 V DS (V) 0 1 2 3 Gate to Source Voltage 5 4 V GS (V) 3 HAT2052T 0.20 0.15 0.10 ID=5A 0.05 10 1A I D= 5 A 2A 40 5, 2, 1 A 4V Pulse Test 0 40 2.5 V 0.02 VGS = 4 V 0.01 0.2 80 120 Tc (°C) 0.5 1 2 Drain Current VGS = 2.5 V 0 –40 0.05 V GS (V) 80 Case Temperature 4 8 Static Drain to Source on State Resistance vs. Temperature 100 20 Pulse Test 0.1 0.002 2 4 6 Gate to Source Voltage 60 0.2 0.005 2A 1A 0 Static Drain to Source on State Resistance R DS(on) (m Ω) Pulse Test 160 Forward Transfer Admittance |y fs | (S) Drain to Source Saturation Voltage V DS(on) (V) 0.25 Static Drain to Source on State Resistance vs. Drain Current Drain to Source On State Resistance R DS(on) ( Ω ) Drain to Source Saturation Voltage vs. Gate to Source Voltage 50 5 10 20 I D (A) Forward Transfer Admittance vs. Drain Current Tc = –25 °C 20 10 75 °C 5 25 °C 2 1 0.5 0.2 V DS = 10 V Pulse Test 0.5 1 2 5 Drain Current I D (A) 10 20 HAT2052T Body–Drain Diode Reverse Recovery Time 10000 200 Capacitance C (pF) Reverse Recovery Time trr (ns) 500 100 50 20 10 5 0.1 5 VGS = 0 f = 1 MHz 3000 1000 Ciss 300 Coss 100 Crss 30 di/dt = 20 A/µs V GS = 0, Ta = 25°C 0.2 0.5 1 2 Reverse Drain Current Typical Capacitance vs. Drain to Source Voltage 10 0 10 10 I DR (A) 30 V DS 6 20 10 0 4 V DD = 25 V 10 V 5V 4 8 12 16 Gate Charge Qg (nc) 2 0 20 1000 500 Switching Time t (ns) V GS V GS (V) 8 Gate to Source Voltage V DS (V) Drain to Source Voltage I D = 5.0 A V DD = 5 V 10 V 25 V 40 50 Switching Characteristics 10 40 30 Drain to Source Voltage V DS (V) Dynamic Input Characteristics 50 20 V GS = 4 V, V DD = 10 V PW = 3 µs, duty < 1 % 200 t d(off) 100 50 tf tr 20 10 0.1 t d(on) 0.2 0.5 1 Drain Current 2 5 I D (A) 10 5 HAT2052T Reverse Drain Current vs. Souece to Drain Voltage 10 Reverse Drain Current I DR (A) Pulse Test 8 6 5V 4 V GS = 0 V 2 0 0.4 0.8 1.2 Source to Drain Voltage 1.6 2.0 V SD (V) Switching Time Test Circuit Switching Time Waveform Vout Monitor Vin Monitor 90% D.U.T. RL Vin Vin 4V 50Ω V DD = 10 V Vout 10% 10% 90% td(on) 6 tr 10% 90% td(off) tf HAT2052T Normalized Transient Thermal Impedance vs. Pulse Width ( 1 Drive Operation) Normalized Transient Thermal Impedance γ s (t) 10 1 D=1 0.5 0.1 0.01 0.2 0.1 0.05 θ ch – f(t) = γ s (t) • θ ch – f θ ch – f = 166 °C/W, Ta = 25 °C When using the glass epoxy board (FR4 40x40x1.6 mm) 0.02 0.01 e uls 0.001 p ot PDM sh 1 D= PW T PW T 0.0001 10 µ 100 µ 1m 10 m 100 m 1 10 100 1000 10000 Pulse Width PW (S) Normalized Transient Thermal Impedance vs. Pulse Width ( 2 Drive Operation) Normalized Transient Thermal Impedance γ s (t) 10 1 D=1 0.5 0.1 0.01 0.2 0.1 0.05 θ ch – f(t) = γ s (t) • θ ch – f θ ch – f = 210 °C/W, Ta = 25 °C When using the glass epoxy board (FR4 40x40x1.6 mm) 0.02 0.01 0.0001 10 µ PDM e 0.001 t ho 1s ls pu D= PW T PW T 100 µ 1m 10 m 100 m 1 10 Pulse Width PW (S) 100 1000 10000 7 HAT2052T Package Dimensions Unit: mm 1 4 0.65 0.10 0.22 +0.08 –0.07 0.13 M 0.17 ± 0.05 6.40 ± 0.20 0.07 +0.03 –0.04 5 1.10 Max 8 4.40 ± 0.1 3.00 ± 0.1 0–8° 0.50 ± 0.10 Hitachi code EIAJ JEDEC 8 TTP–8D — — Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.