PD - 94727B IRF6608 l l l l l l l HEXFET® Power MOSFET Application Specific MOSFETs Ideal for CPU Core DC-DC Converters Low Conduction Losses Low Switching Losses Low Profile (<0.7 mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques VDSS RDS(on) max Qg 30V 9.0mΩ@VGS = 10V 11mΩ@VGS = 4.5V 16nC DirectFET ISOMETRIC ST Applicable DirectFET Outline and Substrate Outline (see p.7, 8 for details) SQ SX ST MQ MX MT Description The IRF6608 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6608 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6608 has been optimized for parameters that are critical in synchronous buck converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6608 has been optimized for parameters that are critical in synchronous buck converters including Rds(on) and gate charge to minimize losses in the control FET socket. Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25°C ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current c Power Dissipation g Power Dissipation g Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Max. Units 30 ±12 55 13 10 100 2.1 1.4 42 0.017 -40 to + 150 V A W W/°C °C Thermal Resistance Parameter RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient fj Junction-to-Ambient gj Junction-to-Ambient hj Junction-to-Case ij Junction-to-PCB Mounted Typ. Max. Units ––– 12.5 20 ––– 1.0 58 ––– ––– 3.0 ––– °C/W Notes through are on page 2 www.irf.com 1 3/31/04 IRF6608 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 29 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 7.0 9.0 ––– 8.0 11 V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 13A e VGS = 4.5V, ID = 10A e VGS(th) Gate Threshold Voltage 1.0 ––– 3.0 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.4 ––– mV/°C IDSS Drain-to-Source Leakage Current µA IGSS gfs Qg ––– ––– 30 ––– ––– 100 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Conditions VGS = 0V, ID = 250µA VDS = VGS, ID = 250µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 12V VGS = -12V S VDS = 15V, ID = 8.8A Forward Transconductance 28 ––– ––– Total Gate Charge ––– 16 24 Qgs1 Pre-Vth Gate-to-Source Charge ––– 4.6 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.4 ––– Qgd Gate-to-Drain Charge ––– 5.3 ––– ID = 8.8A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 4.7 ––– See Fig. 16 Qsw ––– 6.7 ––– Qoss Output Charge ––– 11 ––– td(on) Turn-On Delay Time ––– 13 ––– tr Rise Time ––– 12 ––– td(off) Turn-Off Delay Time ––– 16 ––– tf Fall Time ––– 3.4 ––– Ciss Input Capacitance ––– 2120 ––– Coss Output Capacitance ––– 440 ––– Crss Reverse Transfer Capacitance ––– 260 ––– VDS = 15V nC nC VGS = 4.5V VDS = 15V, VGS = 0V VDD = 15V, VGS = 4.5Ve ID = 8.8A ns Clamped Inductive Load VGS = 0V pF VDS = 15V ƒ = 1.0MHz Avalanche Characteristics EAS Parameter Single Pulse Avalanche Energyd Typ. ––– Units mJ IAR Avalanche Currentc ––– 8.8 A EAR Repetitive Avalanche Energy c ––– 0.21 mJ Max. 54 Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 13 ISM (Body Diode) Pulsed Source Current ––– ––– 100 showing the integral reverse VSD (Body Diode)c Diode Forward Voltage ––– 1.2 p-n junction diode. TJ = 25°C, IS = 8.8A, VGS = 0V e trr Reverse Recovery Time ––– 31 47 ns Qrr Reverse Recovery Charge ––– 33 50 nC MOSFET symbol A D G S 0.94 V TJ = 25°C, IF = 8.8A di/dt = 100A/µs e Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.38mH RG = 25Ω, IAS = 8.8A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in. square Cu board. 2 Used double sided cooling, mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. www.irf.com IRF6608 100 100 BOTTOM ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 7.0V 4.5V 3.8V 3.5V 3.2V 2.9V 2.7V 10 2.7V 2.7V 10 TOP 30µs PULSE WIDTH Tj = 25°C BOTTOM 0.1 1.0 10.0 0.1 100.0 Fig 1. Typical Output Characteristics 1.0 10.0 100.0 Fig 2. Typical Output Characteristics 2.0 T J = 150°C T J = 25°C 10.0 VDS = 20V 30µs PULSE WIDTH 1.0 ID = 12A VGS = 10V 1.5 (Normalized) RDS(on) , Drain-to-Source On Resistance 100.0 ID, Drain-to-Source Current (Α) 30µs PULSE WIDTH Tj = 150°C 1 1 1.0 0.5 2.5 2.8 3.0 3.3 3.5 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 10000 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 8.8A C oss = C ds + C gd C, Capacitance (pF) VGS 10V 7.0V 4.5V 3.8V 3.5V 3.2V 2.9V 2.7V Ciss 1000 Coss Crss 10 VDS= 24V VDS= 15V 8 6 4 2 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 10 20 30 40 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRF6608 1000 100.0 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 150°C 10.0 T J = 25°C 1.0 100µsec 10 1msec 1 VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 10msec Tc = 25°C Tj = 150°C Single Pulse 0 1.2 1 10 100 1000 VSD, Source-toDrain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 2.2 VGS(th) Gate threshold Voltage (V) 60 ID , Drain Current (A) 50 40 30 20 10 2.0 1.8 ID = 250µA 1.6 1.4 1.2 1.0 0.8 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) T J , Junction Temperature (°C) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 0.01 1 τJ 0.1 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τC τ τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.01 Ri (°C/W) R4 R4 τi (sec) 2.023 0.000678 19.48 0.240237 21.78 2.0167 14.71 58 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 www.irf.com 240 0.025 EAS, Single Pulse Avalanche Energy (mJ) R DS(on) , Drain-to -Source On Resistance ( Ω) IRF6608 0.020 0.015 ID = 12A 0.010 ID 3.3A 3.8A BOTTOM 8.8A TOP 200 160 120 80 40 0 0.005 3 4 5 6 7 8 9 25 10 50 75 100 125 150 Starting T J, Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance Vs. Gate Voltage Fig 13c. Maximum Avalanche Energy Vs. Drain Current 15V LD VDS DRIVER L VDS + VDD - D.U.T RG + V - DD IAS VGS 20V tp D.U.T A VGS 0.01Ω Pulse Width < 1µs Duty Factor < 0.1% Fig 13a. Unclamped Inductive Test Circuit V(BR)DSS Fig 14a. Switching Time Test Circuit VDS tp 90% 10% VGS td(on) I AS Fig 13b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. tr td(off) Fig 14b. Switching Time Waveforms Id Vds 50KΩ 12V tf Vgs .2µF .3µF D.U.T. + V - DS VGS Vgs(th) 3mA IG ID Current Sampling Resistors Qgs1 Qgs2 Fig 15. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 16. Gate Charge Waveform 5 IRF6608 D.U.T Driver Gate Drive + + • • • • D.U.T. ISD Waveform Reverse Recovery Current + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, ST Outline (Small Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. 1- Drain 2- Drain 3- Source 4- Source 5- Gate 6- Drain 7- Drain 6 5 7 6 3 4 1 2 www.irf.com IRF6608 DirectFET Outline Dimension, ST Outline (Small Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS Note: Controlling dimensions are in mm METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.62 E 0.58 0.62 F 0.58 0.79 G 0.75 0.57 H 0.53 0.30 J 0.26 K O.88 0.98 2.28 L 2.18 0.70 M 0.59 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN MAX 0.187 0.191 0.146 0.156 0.108 0.112 0.014 0.018 0.023 0.024 0.023 0.024 0.030 0.031 0.021 0.022 0.010 0.012 0.035 0.039 0.086 0.090 0.023 0.028 0.001 0.003 0.003 0.007 DirectFET Part Marking www.irf.com 7 IRF6608 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel, order IRF6618TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MIN MIN MAX CODE MAX MAX MIN MIN MAX 12.992 A 6.9 N.C N.C 330.0 177.77 N.C N.C 0.795 0.75 B N.C N.C 20.2 19.06 N.C N.C 0.504 C 0.53 0.50 12.8 13.5 0.520 13.2 12.8 0.059 D 0.059 N.C 1.5 1.5 N.C N.C N.C 3.937 2.31 E N.C 100.0 58.72 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 18.4 13.50 G 0.488 0.47 N.C 12.4 11.9 0.567 14.4 12.01 H 0.469 0.47 11.9 11.9 N.C 0.606 15.4 12.01 Loaded Tape Feed Direction NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.3/04 8 www.irf.com