IRF IRF6608

PD - 94727B
IRF6608
l
l
l
l
l
l
l
HEXFET® Power MOSFET
Application Specific MOSFETs
Ideal for CPU Core DC-DC Converters
Low Conduction Losses
Low Switching Losses
Low Profile (<0.7 mm)
Dual Sided Cooling Compatible
Compatible with existing Surface Mount Techniques
VDSS
RDS(on) max
Qg
30V
9.0mΩ@VGS = 10V
11mΩ@VGS = 4.5V
16nC
DirectFET™ ISOMETRIC
ST
Applicable DirectFET Outline and Substrate Outline (see p.7, 8 for details)
SQ
SX
ST
MQ
MX
MT
Description
The IRF6608 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to
achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and
processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous
best thermal resistance by 80%.
The IRF6608 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest
generation of processors operating at higher frequencies. The IRF6608 has been optimized for parameters that are critical in
synchronous buck converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6608 has been
optimized for parameters that are critical in synchronous buck converters including Rds(on) and gate charge to minimize losses in
the control FET socket.
Absolute Maximum Ratings
Parameter
VDS
VGS
ID @ TC = 25°C
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TJ
TSTG
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current c
Power Dissipation g
Power Dissipation g
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Max.
Units
30
±12
55
13
10
100
2.1
1.4
42
0.017
-40 to + 150
V
A
W
W/°C
°C
Thermal Resistance
Parameter
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient fj
Junction-to-Ambient gj
Junction-to-Ambient hj
Junction-to-Case ij
Junction-to-PCB Mounted
Typ.
Max.
Units
–––
12.5
20
–––
1.0
58
–––
–––
3.0
–––
°C/W
Notes  through ˆ are on page 2
www.irf.com
1
3/31/04
IRF6608
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
29
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
7.0
9.0
–––
8.0
11
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 13A e
VGS = 4.5V, ID = 10A e
VGS(th)
Gate Threshold Voltage
1.0
–––
3.0
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-5.4
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
µA
IGSS
gfs
Qg
–––
–––
30
–––
–––
100
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Conditions
VGS = 0V, ID = 250µA
VDS = VGS, ID = 250µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 12V
VGS = -12V
S
VDS = 15V, ID = 8.8A
Forward Transconductance
28
–––
–––
Total Gate Charge
–––
16
24
Qgs1
Pre-Vth Gate-to-Source Charge
–––
4.6
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.4
–––
Qgd
Gate-to-Drain Charge
–––
5.3
–––
ID = 8.8A
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
4.7
–––
See Fig. 16
Qsw
–––
6.7
–––
Qoss
Output Charge
–––
11
–––
td(on)
Turn-On Delay Time
–––
13
–––
tr
Rise Time
–––
12
–––
td(off)
Turn-Off Delay Time
–––
16
–––
tf
Fall Time
–––
3.4
–––
Ciss
Input Capacitance
–––
2120
–––
Coss
Output Capacitance
–––
440
–––
Crss
Reverse Transfer Capacitance
–––
260
–––
VDS = 15V
nC
nC
VGS = 4.5V
VDS = 15V, VGS = 0V
VDD = 15V, VGS = 4.5Ve
ID = 8.8A
ns
Clamped Inductive Load
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energyd
Typ.
–––
Units
mJ
IAR
Avalanche Currentc
–––
8.8
A
EAR
Repetitive Avalanche Energy c
–––
0.21
mJ
Max.
54
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
13
ISM
(Body Diode)
Pulsed Source Current
–––
–––
100
showing the
integral reverse
VSD
(Body Diode)c
Diode Forward Voltage
–––
1.2
p-n junction diode.
TJ = 25°C, IS = 8.8A, VGS = 0V e
trr
Reverse Recovery Time
–––
31
47
ns
Qrr
Reverse Recovery Charge
–––
33
50
nC
MOSFET symbol
A
D
G
S
0.94
V
TJ = 25°C, IF = 8.8A
di/dt = 100A/µs e
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 1.38mH
RG = 25Ω, IAS = 8.8A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Surface mounted on 1 in. square Cu board.
2
… Used double sided cooling, mounting pad.
† Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
‡ TC measured with thermal couple mounted to top (Drain) of part.
ˆ Rθ is measured at TJ of approximately 90°C.
www.irf.com
IRF6608
100
100
BOTTOM
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
7.0V
4.5V
3.8V
3.5V
3.2V
2.9V
2.7V
10
2.7V
2.7V
10
TOP
30µs PULSE WIDTH
Tj = 25°C
BOTTOM
0.1
1.0
10.0
0.1
100.0
Fig 1. Typical Output Characteristics
1.0
10.0
100.0
Fig 2. Typical Output Characteristics
2.0
T J = 150°C
T J = 25°C
10.0
VDS = 20V
30µs PULSE WIDTH
1.0
ID = 12A
VGS = 10V
1.5
(Normalized)
RDS(on) , Drain-to-Source On Resistance
100.0
ID, Drain-to-Source Current (Α)
30µs PULSE WIDTH
Tj = 150°C
1
1
1.0
0.5
2.5
2.8
3.0
3.3
3.5
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
10000
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
12
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 8.8A
C oss = C ds + C gd
C, Capacitance (pF)
VGS
10V
7.0V
4.5V
3.8V
3.5V
3.2V
2.9V
2.7V
Ciss
1000
Coss
Crss
10
VDS= 24V
VDS= 15V
8
6
4
2
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
10
20
30
40
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRF6608
1000
100.0
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
T J = 150°C
10.0
T J = 25°C
1.0
100µsec
10
1msec
1
VGS = 0V
0.1
0.1
0.2
0.4
0.6
0.8
1.0
10msec
Tc = 25°C
Tj = 150°C
Single Pulse
0
1.2
1
10
100
1000
VSD, Source-toDrain Voltage (V)
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
2.2
VGS(th) Gate threshold Voltage (V)
60
ID , Drain Current (A)
50
40
30
20
10
2.0
1.8
ID = 250µA
1.6
1.4
1.2
1.0
0.8
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
T J , Junction Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
100
Thermal Response ( Z thJA )
D = 0.50
0.20
10
0.10
0.05
0.02
0.01
1
τJ
0.1
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τC
τ
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
0.01
Ri (°C/W)
R4
R4
τi (sec)
2.023
0.000678
19.48
0.240237
21.78
2.0167
14.71
58
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
4
www.irf.com
240
0.025
EAS, Single Pulse Avalanche Energy (mJ)
R DS(on) , Drain-to -Source On Resistance ( Ω)
IRF6608
0.020
0.015
ID = 12A
0.010
ID
3.3A
3.8A
BOTTOM 8.8A
TOP
200
160
120
80
40
0
0.005
3
4
5
6
7
8
9
25
10
50
75
100
125
150
Starting T J, Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13c. Maximum Avalanche Energy Vs. Drain Current
15V
LD
VDS
DRIVER
L
VDS
+
VDD -
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
D.U.T
A
VGS
0.01Ω
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 13a. Unclamped Inductive Test Circuit
V(BR)DSS
Fig 14a. Switching Time Test Circuit
VDS
tp
90%
10%
VGS
td(on)
I AS
Fig 13b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
tr
td(off)
Fig 14b. Switching Time Waveforms
Id
Vds
50KΩ
12V
tf
Vgs
.2µF
.3µF
D.U.T.
+
V
- DS
VGS
Vgs(th)
3mA
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Fig 15. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 16. Gate Charge Waveform
5
IRF6608
D.U.T
Driver Gate Drive
+
ƒ
+
‚
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
„
-
-
Period
P.W.
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, ST Outline
(Small Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
1- Drain
2- Drain
3- Source
4- Source
5- Gate
6- Drain
7- Drain
6
5
7
6
3
4
1
2
www.irf.com
IRF6608
DirectFET™ Outline Dimension, ST Outline
(Small Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
Note: Controlling
dimensions are in mm
METRIC
MAX
CODE MIN
4.85
A
4.75
3.95
B
3.70
2.85
C
2.75
0.45
D
0.35
0.62
E
0.58
0.62
F
0.58
0.79
G
0.75
0.57
H
0.53
0.30
J
0.26
K
O.88 0.98
2.28
L
2.18
0.70
M
0.59
0.08
N
0.03
0.17
P
0.08
IMPERIAL
MIN
MAX
0.187
0.191
0.146
0.156
0.108
0.112
0.014
0.018
0.023
0.024
0.023
0.024
0.030
0.031
0.021
0.022
0.010
0.012
0.035
0.039
0.086
0.090
0.023
0.028
0.001
0.003
0.003
0.007
DirectFET™ Part Marking
www.irf.com
7
IRF6608
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel,
order IRF6618TR1
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MIN
MAX
CODE
MAX
MAX
MIN
MIN
MAX
12.992
A
6.9
N.C
N.C
330.0
177.77 N.C
N.C
0.795
0.75
B
N.C
N.C
20.2
19.06
N.C
N.C
0.504
C
0.53
0.50
12.8
13.5
0.520
13.2
12.8
0.059
D
0.059
N.C
1.5
1.5
N.C
N.C
N.C
3.937
2.31
E
N.C
100.0
58.72
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
18.4
13.50
G
0.488
0.47
N.C
12.4
11.9
0.567
14.4
12.01
H
0.469
0.47
11.9
11.9
N.C
0.606
15.4
12.01
Loaded Tape Feed Direction
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.201
0.209
5.10
5.30
0.256
0.264
6.50
6.70
0.059
N.C
1.50
N.C
0.059
0.063
1.50
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.3/04
8
www.irf.com