IRF IRF6635

PD - 96981B
IRF6635
DirectFET™ Power MOSFET
Typical values (unless otherwise specified)
RoHs compliant containing no lead or bromide
VDSS
VGS
RDS(on)
RDS(on)
Low Profile (<0.7 mm)
30V max ±20V max 1.3mΩ@ 10V 1.8mΩ@ 4.5V
Dual Sided Cooling Compatible
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
Ultra Low Package Inductance
47nC
17nC
4.7nC
48nC
29nC
1.8V
Optimized for High Frequency Switching
Ideal for CPU Core DC-DC Converters
Optimized for for SyncFET socket of Sync. Buck Converter
Low Conduction and Switching Losses
Compatible with existing Surface Mount Techniques
DirectFET™ ISOMETRIC
MX
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
Description
The IRF6635 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to
achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6635 balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/high
efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6635 has
been optimized for parameters that are critical in synchronous buck converter’s SyncFET sockets.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Typical RDS(on) (mΩ)
10
ID = 32A
8
6
4
T J = 125°C
2
T J = 25°C
0
0
1
2
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate-to-Source Voltage
Notes:
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET MOSFETs.
Repetitive rating; pulse width limited by max. junction temperature.
www.irf.com
VGS, Gate-to-Source Voltage (V)
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
Max.
Units
30
±20
32
25
180
250
200
25
V
A
mJ
A
6.0
ID= 25A
5.0
VDS= 24V
VDS= 15V
4.0
3.0
2.0
1.0
0.0
0
10
20
30
40
50
60
QG Total Gate Charge (nC)
Fig 2. Total Gate Charge vs. Gate-to-Source Voltage
Starting TJ = 25°C, L = 0.63mH, RG = 25Ω, IAS = 25A.
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple mounted to top (Drain) of part.
1
06/02/05
IRF6635
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
Drain-to-Source Breakdown Voltage
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
30
Conditions
Typ. Max. Units
V
VGS = 0V, ID = 250µA
–––
–––
–––
24
–––
–––
1.3
1.8
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 32A
1.8
2.4
VGS = 4.5V, ID = 25A
VDS = VGS, ID = 250µA
VGS(th)
Gate Threshold Voltage
1.35
1.8
2.35
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-6.1
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
5.0
µA
VDS = 24V, VGS = 0V
–––
–––
150
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
IGSS
gfs
Qg
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
45
–––
–––
VGS = -20V
S
VDS = 15V, ID = 25A
Total Gate Charge
–––
47
71
Qgs1
Pre-Vth Gate-to-Source Charge
–––
12
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
4.7
–––
Qgd
Gate-to-Drain Charge
–––
17
Qgodr
–––
13
–––
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
22
–––
Qoss
Output Charge
–––
29
–––
nC
RG
Gate Resistance
–––
1.0
–––
Ω
td(on)
Turn-On Delay Time
–––
21
–––
VDD = 16V, VGS = 4.5V
tr
Rise Time
–––
13
–––
ID = 25A
td(off)
Turn-Off Delay Time
–––
33
–––
tf
Fall Time
–––
8.3
–––
Ciss
Input Capacitance
–––
5970
VDS = 15V
nC
VGS = 4.5V
ID = 25A
See Fig. 15
VDS = 16V, VGS = 0V
ns
Clamped Inductive Load
–––
VGS = 0V
pF
VDS = 15V
Coss
Output Capacitance
–––
1280
–––
Crss
Reverse Transfer Capacitance
–––
600
–––
Min.
Typ. Max. Units
–––
–––
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
A
–––
–––
Conditions
MOSFET symbol
3.5
showing the
250
integral reverse
p-n junction diode.
TJ = 25°C, IS = 25A, VGS = 0V
(Body Diode)
VSD
Diode Forward Voltage
–––
–––
1.0
V
trr
Reverse Recovery Time
–––
20
30
ns
TJ = 25°C, IF = 25A
Qrr
Reverse Recovery Charge
–––
48
72
nC
di/dt = 500A/µs
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6635
Absolute Maximum Ratings
Max.
Units
2.8
1.8
89
270
-40 to + 150
W
Parameter
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
°C
Thermal Resistance
Parameter
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
0.022
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
τi (sec)
0.6784
0.001268
17.299
0.033387
17.566
0.508924
9.4701
11.19309
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
Surface mounted on 1 in. square Cu board, steady state.
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
TC measured with thermocouple incontact with top (Drain) of part.
Rθ is measured at TJ of approximately 90°C.
Mounted to a PCB with a
thin gap filler and heat sink.
(still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6635
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
BOTTOM
100
10
2.5V
2.5V
≤60µs PULSE WIDTH
Tj = 25°C
1
0.1
1
10
100
0.1
1000
10
100
1000
Fig 5. Typical Output Characteristics
1000
1.5
ID = 32A
VDS = 15V
≤60µs PULSE WIDTH
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (Α)
1
V DS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
100
T J = 150°C
T J = 25°C
T J = 40°C
10
1
0.1
1.0
V GS = 4.5V
V GS = 10V
0.5
1
2
3
4
30
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
Typical RDS(on) Normalized ( mΩ)
T J = 25°C
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
≤60µs PULSE WIDTH
Tj = 150°C
10
VDS, Drain-to-Source Voltage (V)
Crss
25
Vgs = 3.0V
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
20
15
10
5
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
20
60
100
140
180
220
260
ID, Drain Current (A)
Fig 9. Normalized Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com
IRF6635
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
100
100
10
T J = 150°C
T J = 25°C
T J = 40°C
1
10msec
1msec
10
100msec
1
T A = 25°C
T J = 150°C
Single Pulse
VGS = 0V
0.1
0
0.01
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VSD , Source-to-Drain Voltage (V)
1.00
10.00
100.00
Fig11. Maximum Safe Operating Area
Fig 10. Typical Source-Drain Diode Forward Voltage
200
2.2
175
2.0
VGS(th) Gate threshold Voltage (V)
ID, Drain Current (A)
0.10
VDS , Drain-to-Source Voltage (V)
150
125
100
75
50
25
1.8
1.6
ID = 250µA
1.4
1.2
1.0
0.8
0.6
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 13. Threshold Voltage vs. Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
EAS , Single Pulse Avalanche Energy (mJ)
900
ID
800
TOP
9.1A
11A
BOTTOM 25A
700
600
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6635
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16c. Unclamped Inductive Waveforms
Fig 16b. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6635
D.U.T
Driver Gate Drive
+
-
-
-
RG
•
•
•
•
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
-
Re-Applied
Voltage
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
www.irf.com
7
IRF6635
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE MIN
MAX
A
6.25
6.35
B
4.80 5.05
3.95
C
3.85
D
0.35
0.45
E
0.72
0.68
F
0.72
0.68
G
1.38
1.42
H
0.84
0.80
J
0.42
0.38
K
0.88 1.01
L
2.41
2.28
M
0.70
0.59
N
0.15
0.20
P
0.17
0.08
IMPERIAL
MAX
MAX
0.246 0.250
0.189 0.201
0.152 0.156
0.014 0.018
0.027 0.028
0.027 0.028
0.054 0.056
0.032 0.033
0.015 0.017
0.035 0.039
0.090 0.095
0.023 0.028
0.006 0.008
0.003 0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6635
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6635). For 1000 parts on 7" reel,
order IRF6635TR1
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
METRIC
IMPERIAL
METRIC
IMPERIAL
CODE
MIN
MIN
MAX
MAX
MIN
MIN
MAX
MAX
A
12.992
6.9
N.C
177.77 N.C
330.0
N.C
N.C
B
0.795
0.75
N.C
19.06
20.2
N.C
N.C
N.C
C
0.504
0.53
0.50
13.5
12.8
0.520
12.8
13.2
D
0.059
0.059
N.C
1.5
1.5
N.C
N.C
N.C
E
3.937
2.31
58.72
N.C
100.0
N.C
N.C
N.C
F
N.C
N.C
N.C
0.53
N.C
0.724
13.50
18.4
G
0.488
0.47
11.9
N.C
12.4
0.567
12.01
14.4
H
0.469
0.47
11.9
N.C
11.9
0.606
12.01
15.4
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.06/05
www.irf.com
9