PD - 96981B IRF6635 DirectFET™ Power MOSFET Typical values (unless otherwise specified) RoHs compliant containing no lead or bromide VDSS VGS RDS(on) RDS(on) Low Profile (<0.7 mm) 30V max ±20V max 1.3mΩ@ 10V 1.8mΩ@ 4.5V Dual Sided Cooling Compatible Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) Ultra Low Package Inductance 47nC 17nC 4.7nC 48nC 29nC 1.8V Optimized for High Frequency Switching Ideal for CPU Core DC-DC Converters Optimized for for SyncFET socket of Sync. Buck Converter Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques DirectFET™ ISOMETRIC MX Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT Description The IRF6635 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6635 balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6635 has been optimized for parameters that are critical in synchronous buck converter’s SyncFET sockets. Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR Typical RDS(on) (mΩ) 10 ID = 32A 8 6 4 T J = 125°C 2 T J = 25°C 0 0 1 2 3 4 5 6 7 8 9 10 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate-to-Source Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET MOSFETs. Repetitive rating; pulse width limited by max. junction temperature. www.irf.com VGS, Gate-to-Source Voltage (V) Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current Max. Units 30 ±20 32 25 180 250 200 25 V A mJ A 6.0 ID= 25A 5.0 VDS= 24V VDS= 15V 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 50 60 QG Total Gate Charge (nC) Fig 2. Total Gate Charge vs. Gate-to-Source Voltage Starting TJ = 25°C, L = 0.63mH, RG = 25Ω, IAS = 25A. Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple mounted to top (Drain) of part. 1 06/02/05 IRF6635 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. BVDSS Drain-to-Source Breakdown Voltage ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– 30 Conditions Typ. Max. Units V VGS = 0V, ID = 250µA ––– ––– ––– 24 ––– ––– 1.3 1.8 mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 32A 1.8 2.4 VGS = 4.5V, ID = 25A VDS = VGS, ID = 250µA VGS(th) Gate Threshold Voltage 1.35 1.8 2.35 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -6.1 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 5.0 µA VDS = 24V, VGS = 0V ––– ––– 150 VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 20V IGSS gfs Qg Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 45 ––– ––– VGS = -20V S VDS = 15V, ID = 25A Total Gate Charge ––– 47 71 Qgs1 Pre-Vth Gate-to-Source Charge ––– 12 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 4.7 ––– Qgd Gate-to-Drain Charge ––– 17 Qgodr ––– 13 ––– Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 22 ––– Qoss Output Charge ––– 29 ––– nC RG Gate Resistance ––– 1.0 ––– Ω td(on) Turn-On Delay Time ––– 21 ––– VDD = 16V, VGS = 4.5V tr Rise Time ––– 13 ––– ID = 25A td(off) Turn-Off Delay Time ––– 33 ––– tf Fall Time ––– 8.3 ––– Ciss Input Capacitance ––– 5970 VDS = 15V nC VGS = 4.5V ID = 25A See Fig. 15 VDS = 16V, VGS = 0V ns Clamped Inductive Load ––– VGS = 0V pF VDS = 15V Coss Output Capacitance ––– 1280 ––– Crss Reverse Transfer Capacitance ––– 600 ––– Min. Typ. Max. Units ––– ––– ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current A ––– ––– Conditions MOSFET symbol 3.5 showing the 250 integral reverse p-n junction diode. TJ = 25°C, IS = 25A, VGS = 0V (Body Diode) VSD Diode Forward Voltage ––– ––– 1.0 V trr Reverse Recovery Time ––– 20 30 ns TJ = 25°C, IF = 25A Qrr Reverse Recovery Charge ––– 48 72 nC di/dt = 500A/µs Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6635 Absolute Maximum Ratings Max. Units 2.8 1.8 89 270 -40 to + 150 W Parameter PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range °C Thermal Resistance Parameter RθJA RθJA RθJA RθJC RθJ-PCB Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor 0.022 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ 0.1 SINGLE PULSE ( THERMAL RESPONSE ) 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 Ri (°C/W) R4 R4 τC τ τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri τi (sec) 0.6784 0.001268 17.299 0.033387 17.566 0.508924 9.4701 11.19309 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. Mounted to a PCB with a thin gap filler and heat sink. (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6635 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V BOTTOM 100 10 2.5V 2.5V ≤60µs PULSE WIDTH Tj = 25°C 1 0.1 1 10 100 0.1 1000 10 100 1000 Fig 5. Typical Output Characteristics 1000 1.5 ID = 32A VDS = 15V ≤60µs PULSE WIDTH Typical RDS(on) (Normalized) ID, Drain-to-Source Current (Α) 1 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 100 T J = 150°C T J = 25°C T J = 40°C 10 1 0.1 1.0 V GS = 4.5V V GS = 10V 0.5 1 2 3 4 30 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Typical RDS(on) Normalized ( mΩ) T J = 25°C C oss = C ds + C gd 10000 Ciss Coss 1000 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) ≤60µs PULSE WIDTH Tj = 150°C 10 VDS, Drain-to-Source Voltage (V) Crss 25 Vgs = 3.0V Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 20 15 10 5 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 20 60 100 140 180 220 260 ID, Drain Current (A) Fig 9. Normalized Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6635 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 100 100 10 T J = 150°C T J = 25°C T J = 40°C 1 10msec 1msec 10 100msec 1 T A = 25°C T J = 150°C Single Pulse VGS = 0V 0.1 0 0.01 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VSD , Source-to-Drain Voltage (V) 1.00 10.00 100.00 Fig11. Maximum Safe Operating Area Fig 10. Typical Source-Drain Diode Forward Voltage 200 2.2 175 2.0 VGS(th) Gate threshold Voltage (V) ID, Drain Current (A) 0.10 VDS , Drain-to-Source Voltage (V) 150 125 100 75 50 25 1.8 1.6 ID = 250µA 1.4 1.2 1.0 0.8 0.6 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 13. Threshold Voltage vs. Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS , Single Pulse Avalanche Energy (mJ) 900 ID 800 TOP 9.1A 11A BOTTOM 25A 700 600 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6635 Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16c. Unclamped Inductive Waveforms Fig 16b. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6635 D.U.T Driver Gate Drive + - - - RG • • • • * D.U.T. ISD Waveform Reverse Recovery Current + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + - Re-Applied Voltage Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET™ Substrate and PCB Layout, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. www.irf.com 7 IRF6635 DirectFET™ Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE MIN MAX A 6.25 6.35 B 4.80 5.05 3.95 C 3.85 D 0.35 0.45 E 0.72 0.68 F 0.72 0.68 G 1.38 1.42 H 0.84 0.80 J 0.42 0.38 K 0.88 1.01 L 2.41 2.28 M 0.70 0.59 N 0.15 0.20 P 0.17 0.08 IMPERIAL MAX MAX 0.246 0.250 0.189 0.201 0.152 0.156 0.014 0.018 0.027 0.028 0.027 0.028 0.054 0.056 0.032 0.033 0.015 0.017 0.035 0.039 0.090 0.095 0.023 0.028 0.006 0.008 0.003 0.007 DirectFET™ Part Marking 8 www.irf.com IRF6635 DirectFET™ Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6635). For 1000 parts on 7" reel, order IRF6635TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) METRIC IMPERIAL METRIC IMPERIAL CODE MIN MIN MAX MAX MIN MIN MAX MAX A 12.992 6.9 N.C 177.77 N.C 330.0 N.C N.C B 0.795 0.75 N.C 19.06 20.2 N.C N.C N.C C 0.504 0.53 0.50 13.5 12.8 0.520 12.8 13.2 D 0.059 0.059 N.C 1.5 1.5 N.C N.C N.C E 3.937 2.31 58.72 N.C 100.0 N.C N.C N.C F N.C N.C N.C 0.53 N.C 0.724 13.50 18.4 G 0.488 0.47 11.9 N.C 12.4 0.567 12.01 14.4 H 0.469 0.47 11.9 N.C 11.9 0.606 12.01 15.4 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/05 www.irf.com 9